26-Feb-2020 - Max-Planck-Institut für molekulare Zellbiologie und Genetik

The genetic secret of night vision

Compact DNA organization improves vision in nocturnal mammals

One of the most remarkable characteristics of the vertebrate eye is its retina. Surprisingly, the sensitive portions of the photoreceptor cells are found on the hind side of the retina, meaning that light needs to travel through living neural tissue before it can be detected. While the origin of the high optical quality of the retina remain largely uninvestigated, it has long been proposed that a peculiar DNA organization would serve to improve vision in nocturnal mammals. Researchers at the Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG) in Dresden now showed that the optical quality of the mouse retina increases in the first month after birth that imparts improved visual sensitivity under low light conditions. This improvement is caused by a compact organization of the genetic material in the cell nucleus of rod photoreceptor cells that responsible for dim light vision.

Our retina is an amazing feature of the eye of vertebrates. This light-sensitive layer of tissue is lining the back of the eye-ball and acts as a screen for images projected by the lens. The retina has a thickness of 130 to 500 micrometer and is composed of five layers of dense neural tissue. Since the sensitive portions of the photoreceptor cells are found on the hind side of the retina, light needs to travel through this dense neural tissue to reach the photoreceptors. Researchers suggested that a certain compact arrangement of DNA in the cell nucleus of the rod photoreceptors could improve night vision in nocturnal animals but it remained unclear if and how night vision would benefit from this organization of genetic material.

Scientists around the research group leader Moritz Kreysing at the MPI-CBG together with colleagues from the TU Dresden and the Biozentrum at the Ludwig Maximilians Universität in Munich wanted to find out, if and why cells of retinal neural cells are optically special and what the implications for the transparency of the retina are. Transparency in this context means that each rod cell scatters less light, which causes it to be more transparent. In particular, the researchers focused on the importance of DNA compaction in the rod photoreceptor cells and if changes in the optical properties of the retina are strong enough to improve mouse vision under challenging light conditions. Kaushikaram Subramanian, the first author of the study, explains: “When we studied mice, we found that the optical quality of the retina increases during the first month after birth. There is a 2-fold improvement in the retinal transparency caused by the compact rearrangement of the genetic material in the rod nucleus. With behavioral tests at moonlight intensities, we could also show that mice with this DNA adaptation were able to see better under low light conditions compared to mice that lacked such an arrangement.” The mice were ten times better at detecting motions and better see contrasts in dim light.

The research not only demonstrates function for a prominent exception of cell’s DNA organisation. The work further shows that image clarity is not only a question of the image projecting lens, but sensitively depends on the optical quality of the retina. Moritz Kreysing, who supervised the study and is also a member of the Center for Systems Biology Dresden, summarizes: “Our study implies that genetics can be used to change optical properties of cells and tissues. It would be exciting to see if genetics can be used to improve transparency of cells and tissues that will immensely benefit biological microscopy, because living tissues could be made transparent to better study them. So far, this is only possible with non-living tissue.”

Facts, background information, dossiers
  • vision
  • eyes
  • retina
  • photoreceptors
More about MPI für molekulare Zellbiologie und Genetik
  • News

    Keeping Sperm Cells on Track

    One essential component of each eukaryotic cell is the cytoskeleton. Microtubules, tiny tubes consisting of a protein called tubulin, are part of this skeleton of cells. Cilia and flagella, which are antenna-like structures that protrude from most of the cells in our body, contain many micr ... more

    The genetic basis of bats’ superpowers revealed

    For the first time, the raw genetic material that codes for bats’ unique adaptations and superpowers such as the ability to fly, to use sound to move effortlessly in complete darkness, to survive and tolerate deadly diseases, to resist ageing and cancer - has been fully revealed. Bat1K, a g ... more

    The lipid code

    Lipids, or fats, have many functions in our body: They form membrane barriers, store energy or act as messengers, which regulate cell growth and hormone release. Many of them are also biomarkers for severe diseases. So far, it has been very difficult to analyze the functions of these molecu ... more

  • Videos

    Science Café: CRISPR/Cas

    "There is no shortage of optimism about the scientific potential of CRISPR–Cas9, a technique that can precisely alter the genomes of everything from wheat to elephants", as an article in NATURE states. How exactly does this new technique work? How does it change the lab routine? What are po ... more

  • Research Institutes

    Max-Planck-Institut für molekulare Zellbiologie und Genetik

    more

More about Max-Planck-Gesellschaft
  • News

    More than the sum of mutations

    A new algorithm can predict which genes cause cancer, even if their DNA sequence is not changed. A team of researchers in Berlin combined a wide variety of data, analyzed it with “Artificial Intelligence” and identified numerous cancer genes. This opens up new perspectives for targeted canc ... more

    New app calculates corona infection risk in rooms

    The risk of being infected with the corona virus indoors can now be determined more reliably than before using a web app. A team from the Max Planck Institute for Dynamics and Self-Organization in Göttingen and the University Medical Center Göttingen uses a refined statistical method in the ... more

    Speeding up sequence alignment across the tree of life

    A team of researchers from the Max Planck Institutes of Developmental Biology in Tübingen and the Max Planck Computing and Data Facility in Garching develops new search capabilities that will allow to compare the biochemical makeup of different species from across the tree of life. Its comb ... more

  • Videos

    Epigenetics - packaging artists in the cell

    Methyl attachments to histone proteins determine the degree of packing of the DNA molecule. They thereby determine whether a gene can be read or not. In this way, environment can influence the traits of an organism over generations. more

    Biomaterials - patent solutions from nature

    Animals and plants can produce amazing materials such as spider webs, wood or bone using only a few raw materials available. How do they achieve this? And what can engineers learn from them? more

    Chaperones - folding helpers in the cell

    Nothing works without the correct form: For most proteins, there are millions of ways in which these molecules, composed of long chains of amino acids, can be folded - but only one way is the right one. Researchers in the department "Cellular Biochemistry" at the Max Planck Institute for Bi ... more

  • Research Institutes

    Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V.

    The research institutes of the Max Planck Society perform basic research in the interest of the general public in the natural sciences, life sciences, social sciences, and the humanities. In particular, the Max Planck Society takes up new and innovative research areas that German universiti ... more