14-Oct-2009 - Massachusetts Institute of Technology

Scientists decipher the 3-D structure of the human genome

Fractal globule architecture packs two meters of DNA into each human cell, avoids knots

Scientists have deciphered the three-dimensional structure of the human genome, paving the way for new insights into genomic function and expanding our understanding of how cellular DNA folds at scales that dwarf the double helix.

In a paper in Science, they describe a new technology called Hi-C and apply it to answer the thorny question of how each of our cells stows some three billion base pairs of DNA while maintaining access to functionally crucial segments. The paper comes from a team led by scientists at Harvard University, the Broad Institute of Harvard and MIT, University of Massachusetts Medical School, and the Massachusetts Institute of Technology.

"We've long known that on a small scale, DNA is a double helix," says co-first author Erez Lieberman-Aiden, a graduate student in the Harvard-MIT Division of Health Science and Technology and a researcher at Harvard's School of Engineering and Applied Sciences and in the laboratory of Eric Lander at the Broad Institute. "But if the double helix didn't fold further, the genome in each cell would be two meters long. Scientists have not really understood how the double helix folds to fit into the nucleus of a human cell, which is only about a hundredth of a millimeter in diameter. This new approach enabled us to probe exactly that question."

The researchers report two striking findings. First, the human genome is organized into two separate compartments, keeping active genes separate and accessible while sequestering unused DNA in a denser storage compartment. Chromosomes snake in and out of the two compartments repeatedly as their DNA alternates between active, gene-rich and inactive, gene-poor stretches.

"Cells cleverly separate the most active genes into their own special neighborhood, to make it easier for proteins and other regulators to reach them," says Job Dekker, associate professor of biochemistry and molecular pharmacology at UMass Medical School and a senior author of the Science paper.

Second, at a finer scale, the genome adopts an unusual organization known in mathematics as a "fractal." The specific architecture the scientists found, called a "fractal globule," enables the cell to pack DNA incredibly tightly - the information density in the nucleus is trillions of times higher than on a computer chip - while avoiding the knots and tangles that might interfere with the cell's ability to read its own genome. Moreover, the DNA can easily unfold and refold during gene activation, gene repression, and cell replication.

"Nature's devised a stunningly elegant solution to storing information - a super-dense, knot-free structure," says senior author Eric Lander, director of the Broad Institute, who is also professor of biology at MIT, and professor of systems biology at Harvard Medical School.

In the past, many scientists had thought that DNA was compressed into a different architecture called an "equilibrium globule," a configuration that is problematic because it can become densely knotted. The fractal globule architecture, while proposed as a theoretical possibility more than 20 years ago, has never previously been observed.

Key to the current work was the development of the new Hi-C technique, which permits genome-wide analysis of the proximity of individual genes. The scientists first used formaldehyde to link together DNA strands that are nearby in the cell's nucleus. They then determined the identity of the neighboring segments by shredding the DNA into many tiny pieces, attaching the linked DNA into small loops, and performing massively parallel DNA sequencing.

"By breaking the genome into millions of pieces, we created a spatial map showing how close different parts are to one another," says co-first author Nynke van Berkum, a postdoctoral researcher at UMass Medical School in Dekker's laboratory. "We made a fantastic three-dimensional jigsaw puzzle and then, with a computer, solved the puzzle."

Facts, background information, dossiers
More about MIT
  • News

    Researchers achieve remote control of hormone release

    Abnormal levels of stress hormones such as adrenaline and cortisol are linked to a variety of mental health disorders, including depression and posttraumatic stress disorder (PTSD). MIT researchers have now devised a way to remotely control the release of these hormones from the adrenal gla ... more

    DNA study casts light on century-old mystery of how cells divide

    Scientists have solved a longstanding puzzle of how cells are able to tightly package DNA to enable healthy cell division. Their findings shed light on how single cells can compact DNA 10,000-fold to partition it between two identical cells - a process that is essential for growth, repair a ... more

    North American Center for Research on Advanced Materials to continue for another five years

    At a conference marking the five-year anniversary of the North American Center for Research on Advanced Materials (NORA), the center’s members convened to discuss the outcomes of the research alliance to date as well as future areas of focus, including bioscience and catalysis research, dig ... more

  • Videos

    Expansion Microscopy of Brainbow Hippocampus

    Brainbow-expressing mouse hippocampal brain circuitry, processed via the proExM form of expansion microscopy (ExM), which enables simple nanoscale resolution imaging on fast diffraction-limited microscopes. Video credits: Yosuke Bando, Young Gyu Yoon, Fei Chen, Dawen Cai, Ed Boyden. proExM ... more

    Ingestible origami robot

    Researchers at MIT, the University of Sheffield, and the Tokyo Institute of Technology have demonstrated a tiny origami robot that can unfold itself from a swallowed capsule and, steered by external magnetic fields, crawl across the stomach wall to remove a swallowed button battery or patch ... more

    Engineering a second skin

    Scientists at MIT, Massachusetts General Hospital, Living Proof, and Olivo Labs have developed a new material that can temporarily protect and tighten skin, and smooth wrinkles. With further development, it could also be used to deliver drugs to help treat skin conditions such as eczema and ... more

More about Harvard University
  • News

    Building a better botox

    Botulinum toxins -- a.k.a. botox -- have a variety of uses in medicine: to treat muscle overactivity in overactive bladder, to correct misalignment of the eyes in strabismus, for neck spasms in cervical dystonia, and more. Two botulinum toxins, types A and B, are FDA-approved and widely use ... more

    Separating Drugs with MagLev

    The composition of suspicious powders that may contain illicit drugs can be analyzed using a quick and simple method called magneto-Archimedes levitation (MagLev), according to a new study published in the journal Angewandte Chemie. A team of scientists at Harvard University, USA, has devel ... more

    Combination gene therapy treats multiple age-related diseases

    As we age, our bodies tend to develop diseases like heart failure, kidney failure, diabetes, and obesity, and the presence of any one disease increases the risk of developing others. Traditional drug development targets only one condition per drug, largely ignoring the interconnectedness of ... more

  • Videos

    A diamond radio receiver

    Researchers from the Harvard John A. Paulson School of Engineering and Applied Sciences have made the world’s smallest radio receiver – built out of an assembly of atomic-scale defects in pink diamonds. This tiny radio — whose building blocks are the size of two atoms — can withstand extrem ... more

    Timing Cancer Treatment

    There may be an ideal waiting period for delivering multiple cancer drugsResearchers led by members of the Department of Systems Biology at Harvard Medical School had been studying how silencing MDMX, an oncogene, affected the dynamics of p53, a natural tumor suppressor, in cancer cells whe ... more

    Chemical Exposures and the Brain: The Flint Water Crisis and More

    The water crisis gripping Flint, Michigan has exposed thousands of children to unsafe lead levels, triggering a federal emergency declaration and national conversation about basic public health protections. Lead can be toxic to the brain, and children can be particularly vulnerable. However ... more