To use all functions of this page, please activate cookies in your browser.
my.bionity.com
With an accout for my.bionity.com you can always see everything at a glance – and you can configure your own website and individual newsletter.
- My watch list
- My saved searches
- My saved topics
- My newsletter
5-HT3 receptor
The 5-HT3 receptor is a member of the superfamily of ligand-gated ion channels, a family that also includes the neuronal nicotinic acetylcholine receptors (nAChRs), and the inhibitory neurotransmitter receptors for GABA (both GABAA and GABAC receptors) and glycine.[1][2] The 5-HT3 receptor is most closely related by homology to the nicotinic acetylcholine receptor. The 5-HT3 receptor consists of 5 subunits arranged around a central ion conducting pore which is permeable to sodium, potassium, and calcium ions. Binding of the neurotransmitter 5-hydroxytryptamine (serotonin) to the 5-HT3 receptor opens the channel which in turn leads to an excitatory response in neurons. The 5-HT3 receptor differs markedly in structure and mechanism from the other 5-HT receptor subtypes which are all G-protein-coupled. Product highlight
StructureAs with other ligand gated ion channels, the 5-HT3 receptor is composed of five subunits pseudo symmetrically arranged about a central ion conducting pore. These subunits are proteins encoded by the HTR3A, HTR3B, HTR3C, HTR3D, and/or HTR3E genes. Functional channels may be comprised of five identical 5-HT3A subunits (homopentameric) or a mixture of 5-HT3A and one of the other four 5-HT3B,[3][4][5] 5-HT3C, 5-HT3D, or 5-HT3E subunits (heteropentameric).[6] It appears that only the 5-HT3A subunits form functional homopentameric channels. All other subunit subtypes must heteropentamerize with 5-HT3A subunits to form functional channels. Tissue distributionThe 5-HT3 receptor is expressed throughout the central and peripheral nervous systems and mediates a variety of physiological functions.[2] On a cellular level, it has been shown that postsynaptic 5-HT3 receptors mediate fast excitatory synaptic transmission in rat neocortical interneurons and amygdala, and in ferret visual cortex.[7][8][9] 5-HT3 receptors are also present on presynaptic nerve terminals, where they are thought to mediate or modulate neurotransmitter release.[10][11][12] EffectsWhen the receptor is activated to open the ion channel by agonists, the following effects are observed: AgonistsAgonists (channel openers) for the receptor include:
AntagonistsAntgonists (channel closers) for the receptor (sorted by their respective therapeutic application) include:
DiscoveryIdentification of the 5-HT3 receptor did not take place until 1986 because of a lack of selective pharmacological tool.[2] However, with the discovery that the 5-HT3 receptor plays a prominent role in chemotherapy- and radiotherapy-induced vomiting, and the concomitant development of selective 5-HT3 receptor antagonists to suppress these side effects aroused intense interest from the pharmaceutical industry[14][15] and therefore the identification of 5-HT3 receptors in cell lines and native tissues quickly followed.[2] References
Categories: Genes on chromosome 11 | Genes on chromosome 3 | Neurotransmitters | Ion channels | Ionotropic receptors |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
This article is licensed under the GNU Free Documentation License. It uses material from the Wikipedia article "5-HT3_receptor". A list of authors is available in Wikipedia. |
- A new approach to recording cellular activities - Potential for accelerating research: A novel chemical labeling method allows transient events in cells to be recorded for later analysis
- Hippotherapy
- Johannes_Orth
- Mast cells as a sensor: Enigmatic immune cells help to avoid harmful allergens - Protective shield against allergic reactions
- Category:Anatomy