Meine Merkliste
my.bionity.com  
Login  

Magnetoenzephalographie



Die Magnetoenzephalographie (von griechisch encephalon Gehirn, gráphein schreiben), abgekürzt MEG, ist eine Messung der magnetischen Aktivität des Gehirns, vorgenommen durch äußere Sensoren, den sogenannten SQUIDs. Dabei werden die Magnetfelder meistens zuerst durch ebenfalls supraleitende Spulen oder Spulensysteme erfasst und dann durch die SQUIDs gemessen. MEGs sind komplexe und vergleichsweise teure Geräte. Für den Betrieb werden z. B. monatlich ca. 400 l flüssiges Helium zur Kühlung benötigt.

Weiteres empfehlenswertes Fachwissen

Da die magnetischen Signale des Gehirns nur wenige Femtotesla (1 fT = 10 − 15 T) betragen, müssen äußere Störungen möglichst vollständig abgeschirmt werden. Dafür wird das MEG meistens in einer elektromagnetisch abschirmenden Kabine montiert. Die Abschirmkammer dämpft den Einfluss niederfrequenter Störfelder wie sie von Autos oder Fahrstühlen hervorgerufen werden und schützt vor elektromagnetischer Strahlung. Frequenzen oberhalb von einem Kilohertz ( > 103 Hz) werden allerdings mit dem MEG bisher kaum untersucht. Magnetfelder äußerer Störungen unterscheiden sich von denen des Gehirns auch durch eine wesentlich geringere Ortsabhängigkeit ihrer Stärke auf Grund der größeren Entfernung zum Entstehungsort. (Die Intensität nimmt mit der Entfernung quadratisch ab.) Mit Hilfe der oben erwähnten Spulensysteme können die Felder mit geringerer Ortsabhängigkeit sehr stark unterdrückt werden. Daher hat z. B. der Herzschlag der untersuchten Person bei modernen MEGs nur noch einen geringen Störeffekt. Das Erdmagnetfeld ist zwar ca. 100 Millionen mal stärker als die durch das MEG erfassten Felder, aber es ist zeitlich sehr konstant und nur sehr schwach gekrümmt. Sein Einfluss ist erst dann störend, wenn das gesamte MEG mechanischen Schwingungen ausgesetzt wird.

Die magnetischen Signale des Gehirns werden durch die elektrischen Ströme aktiver Nervenzellen verursacht. Daher kann man insbesondere mit dem MEG Daten aufzeichnen, die ohne zeitliche Verzögerung Ausdruck der momentanen Gesamtaktivität des Gehirns sind. Moderne Ganzkopf-MEGs verfügen über eine helmartige Anordnung von ca. 300 Magnetfeldsensoren. Die leichte Anwendbarkeit der hohen Kanalzeit bei genau bekannten Sensorpositionen, sowie die numerisch einfachere Modellierung sind die wichtigsten Vorteile des MEG bei der Lokalisation der Gehirnaktivität im Vergleich zum EEG. Der wohl größte Nachteil der MEG-Lokalisation besteht in der Nichteindeutigkeit des Inversen Problems. Kurz zusammengefasst bedeutet es, dass die Lokalisation nur dann richtig sein kann, wenn das zu Grunde liegende Modell im Wesentlichen richtig ist (Anzahl der Zentren und deren grobe örtliche Anordnung). Hier liegen die Vorteile der metabolischen funktionellen Methoden, wie fMRT, PET oder SPECT. Die Gehirnforschung liefert glücklicherweise durch den Vergleich und die Kopplung der unterschiedlichen funktionellen Methoden immer genauere Erkenntnisse über die korrekte Modellierung einzelner Gehirnfunktionen.

Das MEG ist ein neues diagnostisches Verfahren mit guter räumlicher und sehr hoher zeitlicher Auflösung, das andere Verfahren zur Messung der Gehirnaktivität (funktionelle Verfahren), wie das EEG und das funktionale Magnetresonanzverfahren (fMRT), ergänzt. In der Medizin wird das MEG u. a. eingesetzt um Hirnareale, die epileptische Anfälle auslösen lokalisieren zu können oder um komplexe Schädeloperationen z. B. bei Patienten mit Hirntumoren zu planen.

Geschichte

Das erste MEG wurde 1968 von David Cohen am Massachusetts Institute of Technology (MIT) aufgenommen.

Literatur

  • Cohen, David: Magnetoencephalography: evidence of magnetic fields produced by alpha rhythm currents. Science 161 (1968) 784-786
  • Cohen, David: Magnetoencephalography: Detection of brain's electric activity with a superconducting magnetometer Science 175 (1972) 664-666
  • Cohen, David: Boston and the history of biomagnetism. Neurology and Clinical Neurophysiology 2004; 30: 1.
  • Cohen, D., Halgren, E. (2004): "Magnetoencephalography". In: Encyclopedia of neuroscience / ed. by George Adelman and Barry H. Smith. 3. ed., rev. and enlarged. [New York u.a.] : Elsevier Science, c2004
  • Hämäläinen, M., Hari, R., Ilmoniemi, R., Knuutila, J. and Lounasmaa, O. V. (1993): Magnetoencephalography – theory, instrumentation, and applications to noninvasive studies of signal processing in the human brain. Reviews of Modern Physics 65 (1993) 413–497

Siehe auch

Bitte beachten Sie den Hinweis zu Gesundheitsthemen!
 
Dieser Artikel basiert auf dem Artikel Magnetoenzephalographie aus der freien Enzyklopädie Wikipedia und steht unter der GNU-Lizenz für freie Dokumentation. In der Wikipedia ist eine Liste der Autoren verfügbar.
Ihr Bowser ist nicht aktuell. Microsoft Internet Explorer 6.0 unterstützt einige Funktionen auf Chemie.DE nicht.