My watch list  

Therapeutic screening for Alzheimer’s disease


Scientists in Canada and the United States have developed a chip sensor for monitoring how drug candidates alter amyloid-β peptide aggregation that they hope could be used to find new treatments for Alzheimer’s disease.

Research into Alzheimer’s disease has shown that the self-aggregation of the amyloid-β (Aβ) peptide plays a vital role in the development of the disease. A number of techniques have been investigated to study Aβ aggregation, including acoustic wave sensors, electrochemistry and atomic force microscopy.

Now, for the first time, researchers have used an LED-interferometric reflectance imaging sensor (LED-IRIS) to look at the interaction of Aβ peptide with small drug candidates. The sensor uses a Si/SiO2 layered substrate as the sensing surface, which is spotted with Aβ peptide ‘seeds’ using a desktop spotting unit. The sensing surface is incubated with Aβ oligomer solution and drug candidates, which results in differing areas of Aβ peptide aggregation. The sensor monitors this aggregation by detecting optical path length changes. The scientists used green tea polyphenol epigallocatechin-3-gallate and zinc, which are already known to inhibit and promote Aβ peptide aggregation respectively, as model modulators to test the system and show it works.

Kagan Kerman at the University of Toronto at Scarborough, who led the research, said: “We have successfully demonstrated a novel method for high throughput screening of small molecules modulating Aβ growth and it provides a promising platform to facilitate therapeutics discovery for Alzheimer’s disease.”

Original publication:

X R Cheng et al, Analyst, 2014

Facts, background information, dossiers
More about University of Toronto
More about Royal Society of Chemistry
  • News

    Using bacteria to make electrodes

    Scientists in France have produced hematite using a bacterial pathway for use as an electrode material in Li-ion technologies. Currently, most commercial electrode materials for Li-ion technologies are prepared using the ceramic method, which requires long heating periods at high temperatur ... more

    Moving the MRI goalposts

    Scientists in the UK have developed a new class of MRI (magnetic resonance imaging) agents that promise to deliver clearer images more quickly. Chemical shifts from proton NMR normally fall between 0-12ppm, but water and fat resonate at 4.7 and 1.3ppm respectively, causing noise that can ov ... more

    High-throughput drug screening in 3D

    Scientists in China have developed a simple microchip that enables quick and inexpensive high-throughput screening of potential drug candidates in 3D cell cultures. Scientists often use cell-based high-throughput screening in the first stage of drug design as a technique to quickly identify ... more

  • Videos

    When Food met Pharma: Delivery Strategies for Nutraceuticals

    With growing prevalence of lifestyle-associated diseases, including obesity, Type II diabetes and cardiovascular disease, there is an urgent need and demand to try to prevent the onset of these diseases within our growing population. Nutraceuticals, along with appropriate diet and exercise, ... more

    Everest Lab: The Science Of High Altitude Survival

    What happens to your body when you push it to somewhere it’s not built to go – to the top of the world?With summit kit, interactive experiments & stunning videos from his trek to the highest lab in the world at Everest Base Camp, join TV & YouTube Science Presenter Greg Foot to find out.Gre ... more

Your browser is not current. Microsoft Internet Explorer 6.0 does not support some functions on Chemie.DE