My watch list
my.bionity.com  
Login  

Stress in the Powerhouse of the Cell

Researchers discover a new principle – how cells protect themselves from mitochondrial defects

22-Oct-2019

AG Meisinger

The net-like structure of green colored mitochondria from the baker's yeast model organism.

Cells need powerhouses known as mitochondria to utilize the energy stored in our food. Most of the proteins required for this powerhouse function are encoded in the nucleus and transported into the mitochondria after they have been synthesized in the cytosol. Signal sequences are needed to allow the protein to enter the mitochondria. Once the protein has arrived there, the signal sequences are, however, removed. Up until now, researchers did not fully understand the importance of this removal of signal sequences. It was also unclear why flawed removal leads to a number of illnesses, such as diseases of the heart or brain. Together with her working group, Dr. Nora Vögtle of the Institute of Biochemistry and Molecular Biology of the University of Freiburg has discovered that errors in the removal of signal sequences lead to an aggregation of these proteins so that they clump together inside the mitochondria.

The aggregation observed by the researchers could cause the cell powerhouses to stop working, but all organisms require this activity for survival. To counteract these defects the cells execute what the researchers call a protective stress response, which enables mitochondria to maintain their key functions. By means of this stress response, cells such as baker’s yeast – the model organism used to carry out the researchers’ experiments – survive. Along with doctoral candidate and lead author of the study, Daniel Poveda-Huertes, Vögtle also discovered that the regulation of many different genes is happening in the cell nucleus. What is more, the researchers found out that a transcription factor normally found in the nucleus was surprisingly transported into the mitochondria, where the expression of genetic information was enhanced. Only through this mechanism could the mitochondria ensure cell survival by maintaining generation of energy under these stressful conditions. This completely novel principle in the stress response of cells, explains Vögtle, is probably the earliest reaction that has been detected up until now. She says, “That’s the cell’s first line of defense when stress appears in its powerhouses.”

Facts, background information, dossiers
More about Uni Freiburg
  • News

    Bacterial Protein Impairs Important Cellular Processes

    Areas of skin that have been damaged by an injury are ideal niches for the concentration of Pseudomonas aeruginosa, a bacterium which impairs the healing process in tissue and creates favorable conditions for infections. Because of its resistance to most available antibiotics, this bacteriu ... more

    Six fingers per hand

    Polydactyly is the extraordinary condition of someone being born with more than five fingers or toes. In a case study published in Nature Communications, researchers from the University of Freiburg, Imperial College London, the University Hospital of Lausanne, and EPFL have for the first ti ... more

    Dissolving protein traffic jam at the entrance of mitochondria

    The research lab of the associate professor (Privatdozent) Dr. Thomas Becker at the University of Freiburg discovered a mechanism that solves blockades on the protein highway towards the powerhouse of the cell. Mitochondria produce the bulk of cellular energy and are therefore referred to ... more

Your browser is not current. Microsoft Internet Explorer 6.0 does not support some functions on Chemie.DE