16-Oct-2019 - Max-Planck-Institut für Kolloid- und Grenzflächenforschung

Diagnostics for everyone

Researchers present a cost-effective machine for the production of microarrays

Microarrays are state-of-the-art tools in molecular biology that enable the rapid and parallel diagnosis of various diseases. Therefore, they are indispensable for the development of new vaccines. Like a computer chip, microarrays contain a lot of information in the smallest space. Microarrays contain thousands of different biomolecules on a surface of a few square centimeters, which can be analyzed in a single experiment. The production of such microarrays has been very expensive and required complex machinery.

Cost-effective, laser-based method

Therefore, the research group of Felix Loeffler develops cost-effective processes and researches novel technologies for the chemical production of microarrays. Similar to the principle of a typewriter, a laser can transfer small polymer nanosheets, containing certain colors or chemical building blocks, in finely defined dot patterns. Subsequently, these molecules can chemically react to complex artificial structures, representing, for example, parts of a pathogen. These microarrays are then used for vaccine research or blood testing. So far, however, this technique could only be used by a few specialists.

DIY microarrays

In a collaboration of the departments of "Biomolecular Systems" and "Colloid Chemistry", Eickelmann et al. present a cost-effective approach to generate microarrays and show a first application in carbohydrate research. Based on a low-cost commercial laser engraver, employing simple components of consumer electronics (Blu-ray player), they developed a very simple system. In addition, they made a spin coater from remaining components, which serves to produce the (color) donor surfaces. Thus, all steps for microarray production can now be performed in any chemistry lab in the world without any special equipment. The total cost of this system is less than 200 euros, which is 200 times cheaper than a conventional device.

Felix Löffler, senior scientist, emphasizes: "The principle is suitable for many different applications and also offers great potential for basic research. It is suitable for the parallel development of new chemical reactions, as well as, for use in disease research, for the synthesis of proteins, sugars, and DNA."

Facts, background information, dossiers
More about MPI für Kolloid- und Grenzflächenforschung
  • News

    Corona: vaccination without a needle?

    The Max Planck Institute of Colloids and Interfaces in Potsdam and the Technology Transfer Fund KHAN-I are developing a vaccine procedure for SARS-CoV2 together with the Lead Discovery Center in Dortmund. The researchers hope that within the next few years, they will be able to establish im ... more

    Bacterium makes complex loops

    A scientific team from the Biosciences and Biotechnology Institute of Aix-Marseille in Saint-Paul lez Durance, in collaboration with researchers from the Max Planck Institute of Colloids and Interfaces in Potsdam and the University of Göttingen, determined the trajectory and swimming speed ... more

    "Make two out of one" - Division of Artificial Cells

    The success of life on earth is based on the amazing ability of living cells to divide themselves into two daughter cells. During such a division process, the outer cell membrane has to undergo a series of morphological transformations that ultimately lead to membrane fission. Scientists at ... more

More about Max-Planck-Gesellschaft