My watch list
my.bionity.com  
Login  

BH3 interacting domain death agonist




BH3 interacting domain death agonist
PDB rendering based on 2bid.
Available structures: 2bid
Identifiers
Symbol(s) BID; MGC15319; MGC42355
External IDs OMIM: 601997 MGI: 108093 Homologene: 923
RNA expression pattern

More reference expression data

Orthologs
Human Mouse
Entrez 637 12122
Ensembl ENSG00000015475 ENSMUSG00000004446
Uniprot P55957 P70444
Refseq NM_001196 (mRNA)
NP_001187 (protein)
NM_007544 (mRNA)
NP_031570 (protein)
Location Chr 22: 16.6 - 16.64 Mb Chr 6: 120.86 - 120.88 Mb
Pubmed search [1] [2]

The BH3 interacting domain death agonist, or BID, gene is a pro-apoptotic member of the Bcl-2 protein family.[1] Bcl-2 family members share one or more of the four characteristic domains of homology entitled the Bcl-2 homology (BH) domains (named BH1, BH2, BH3 and BH4), and can form hetero- or homodimers. Bcl-2 proteins act as anti- or pro-apoptotic regulators that are involved in a wide variety of cellular activities.

Additional recommended knowledge

Contents

Interactions

BID is a pro-apoptotic Bcl-2 protein containing only the BH3 domain. In response to apoptotic signaling, BID interacts with another Bcl-2 family protein, Bax, leading to the insertion of Bax into organelle membranes, primarily the outer mitochondrial membrane. Bax is believed to interact with, and induce the opening of the mitochondrial voltage-dependent anion channel, VDAC. Alternatively, growing evidence suggest that activated Bax and/or Bak form an oligomeric pore, MAC in the outer membrane. This results in the release of cytochrome c and other pro-apoptotic factors from the mitochondria, often referred to as mitochondrial outer membrane permeabilization, leading to activation of caspases. This defines BID as a a direct activator of Bax, a role common to some of the pro-apoptotic Bcl-2 proteins containing only the BH3 domain.

The anti-apoptotic Bcl-2 proteins, including Bcl-2 itself, can bind BID and inhibit BID's ability to activate Bax. As a result, the anti-apoptotic Bcl-2 proteins may inhibit apoptosis by sequestering BID, leading to reduced Bax activation.

The expression of BID is upregulated by the tumor suppressor p53, and BID has been shown to be involved in p53-mediated apoptosis.[2] The p53 protein is a transcription factor that, when activated as part of the cell's response to stress, regulates many downstream target genes, including BID. However, p53 also has a transcription-independent role in apoptosis. In particular, p53 interacts with Bax, promoting Bax activation and the insertion of Bax into the mitochondrial membrane.

Cleavage

 

Several reports have demonstrated that caspase-8, and its substrate BID, are frequently activated in response to certain apoptotic stimuli in a death receptor-independent manner. N-hydroxy-L-arginine (NOHA), a stable intermediate product formed during the conversion of L-arginine to nitric oxide activates caspase-8.[3] Activation of caspase-8, and subsequent BID cleavage participate in cytochrome-c mediated apoptosis.[4] 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mediated activation of caspase-9 via cytochrome-c release has been shown to results in the activation of caspase-8 and Bid cleavage.[5] Aspirin and Curcumin (diferuloylmethane) too activate caspase-8 to cleave and translocated Bid, induced a conformational change in and translocation of Bax and cytochrome-c release.[6][7]

See also

References

  1. ^ Wang K, Yin XM, Chao DT, Milliman CL, Korsmeyer SJ (1996). "BID: a novel BH3 domain-only death agonist". Genes Dev. 10 (22): 2859–69. doi:10.1101/gad.10.22.2859. PMID 8918887.
  2. ^ Sax JK, Fei P, Murphy ME, Bernhard E, Korsmeyer SJ, El-Deiry WS (2002). "BID regulation by p53 contributes to chemosensitivity". Nat. Cell Biol. 4 (11): 842–9. doi:10.1038/ncb866. PMID 12402042.
  3. ^ Singh R, Pervin S, Chaudhuri G (2002). "Caspase-8-mediated BID cleavage and release of mitochondrial cytochrome c during Nomega-hydroxy-L-arginine-induced apoptosis in MDA-MB-468 cells. Antagonistic effects of L-ornithine". J. Biol. Chem. 277 (40): 37630–6. doi:10.1074/jbc.M203648200. PMID 12145284.
  4. ^ Tang D, Lahti JM, Kidd VJ (2000). "Caspase-8 activation and bid cleavage contribute to MCF7 cellular execution in a caspase-3-dependent manner during staurosporine-mediated apoptosis". J. Biol. Chem. 275 (13): 9303–7. doi:10.1074/jbc.275.13.9303. PMID 10734071.
  5. ^ Viswanath V, Wu Y, Boonplueang R, Chen S, Stevenson FF, Yantiri F, Yang L, Beal MF, Andersen JK (2001). "Caspase-9 activation results in downstream caspase-8 activation and bid cleavage in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced Parkinson's disease". J. Neurosci. 21 (24): 9519–28. PMID 11739563.
  6. ^ Gu Q, Wang JD, Xia HH, Lin MC, He H, Zou B, Tu SP, Yang Y, Liu XG, Lam SK, Wong WM, Chan AO, Yuen MF, Kung HF, Wong BC (2005). "Activation of the caspase-8/Bid and Bax pathways in aspirin-induced apoptosis in gastric cancer". Carcinogenesis 26 (3): 541–6. doi:10.1093/carcin/bgh345. PMID 15579484.
  7. ^ Anto RJ, Mukhopadhyay A, Denning K, Aggarwal BB (2002). "Curcumin (diferuloylmethane) induces apoptosis through activation of caspase-8, BID cleavage and cytochrome c release: its suppression by ectopic expression of Bcl-2 and Bcl-xl". Carcinogenesis 23 (1): 143–50. doi:10.1093/carcin/23.1.143. PMID 11756235.
 
This article is licensed under the GNU Free Documentation License. It uses material from the Wikipedia article "BH3_interacting_domain_death_agonist". A list of authors is available in Wikipedia.
Your browser is not current. Microsoft Internet Explorer 6.0 does not support some functions on Chemie.DE