Meine Merkliste
my.bionity.com  
Login  

Röntgenstrahler



  Der Röntgenstrahler ist ein technischer Apparat zum Erzeugen von Röntgenstrahlen. Er besteht aus einer Röntgenröhre und einem Schutzgehäuse, deren Aufbau in der DIN 6814 Blatt 6 festgelegt sind.

Weiteres empfehlenswertes Fachwissen

Inhaltsverzeichnis

Röntgenröhre

Aufbau

  Eine Röntgenröhre besteht in ihrer einfachsten Form aus einer Kathode und einer Anode (früher auch als Antikathode bezeichnet), die in einem Vakuum innerhalb eines abgedichteten Glaskörpers sitzen. Bei Hochleistungsröhren wie sie in der Computertomographie (CT) und der Angiographie verwendet werden, besteht der Vakuumbehälter aus Metall, welches wesentlich größeren Wärmeeinflüssen standhält. Im Laufe der Zeit wurden auch bei Röntgenröhren technische Verbesserungen vorgenommen, die allerdings am eigentlichen Prinzip der Erzeugung von Röntgenstrahlen nichts ändern.

Funktion

Von der Kathode werden Elektronen emittiert (ausgesandt), durch eine Hochspannung zur Anode beschleunigt und dringen in das Anodenmaterial ein. Dabei werden sie abgebremst und erzeugen Röntgenstrahlen (Bremsstrahlung und sogenannte charakteristische Röntgenstrahlung).

Diskrete bzw. charakteristische Röntgenstrahlung
Während bei Quellen für sichtbares Licht nur die äußeren Hüllenelektronen der Atome beteiligt sind, schlagen die in der Röntgenröhre beschleunigten energiereichen Elektronen in der Anode auch Elektronen aus den innersten Schalen der Atome des Anodenmaterials. In diese Lücken "springen" entweder Elektronen aus höheren Energieniveaus oder freie Elektronen. Da die Bindungsenergie der innersten Elektronenniveaus sehr groß ist, entsteht dabei kein sichtbares Licht, sondern die charakteristische Röntgenstrahlung mit materialtypischen diskreten Quantenenergien bzw. Wellenlängen. Diese Energie entspricht dabei der Differenz aus der Bindungsenergie von z. B. der K-Schale und der energieärmeren N-Schale. Natürlich sind auch alle möglichen anderen diskreten Quantenenergien möglich, also beispielsweise die zwischen K- und L-Schale, zwischen M- und K-Schale, M- und L-Schale oder, wie erwähnt auch, von "freien" Elektronen zur K- oder L-Schale.

Diese diskrete bzw. charakteristische Röntgenstrahlung mit den jeweiligen Quantenenergien und somit Wellenlängen wird jedoch mit Ausnahme der Mammographie und der Kristallanalyse nicht oder nur zum kleinen Teil für die Bilderzeugung bei einer Röntgendurchleuchtung genutzt.
Bei der Mammographie wird ein Anodenteller aus Molybdän mit entsprechenden Filtern verwendet, so dass in diesem Fall die K-Strahlung des Molybdäns für die Aufnahme der Milchdrüse verwendet wird. Auch zur Kristallstrukturanalyse werden diskrete Wellenlängen benötigt. Von diesen Ausnahmen abgesehen wird für die Bilderzeugung in der Medizin und Werkstoffprüfung ausschließlich die Röntgenbremsstrahlung verwendet.

Es sei erwähnt, dass die Elektronen der inneren Schalen nicht nur durch Stöße von außen, wie z. B. in der Röntgenröhre, sondern auch durch den Prozess der inneren Konversion aus dem Atom herausgeschlagen werden können.

Röntgenbremsstrahlung
Die Röntgenbremsstrahlung entsteht durch die Abbremsung der Elektronen beim Durchlaufen des Metalls der Anode: jede beschleunigte elektrische Ladung erzeugt elektromagnetische Strahlung. Die Wellenlänge der Strahlung hängt dabei vom Wert der Beschleunigung (bzw. Abbremsung) ab, so dass bei höherer Beschleunigungsspannung bzw. Anodenspannung härtere Röntgenstrahlung (energiereichere Quanten) entsteht. Es gibt allerdings eine minimale Wellenlänge, bei der die Bremsstrahlung abbricht. Sie entspricht der kinetischen Energie des Elektrons, welche an ein einzelnes Photon (Gammaquant) abgegeben wird.

Kathodenarten

Kathoden werden nach der Art der Elektronenerzeugung charakterisiert.

Thermische Emission

Die Kathode besteht aus einem Filament (Glühwendel), welches meist aus einem Wolframdraht besteht. Diese Glühkathode wird durch Stromdurchfluss auf ca. 2000 °C aufgeheizt, so dass thermische Emission von Elektronen aus dem Metall eintritt. Die Elektronen bilden eine negativ geladene Elektronenwolke, die dem Austritt weiterer Elektronen entgegenwirkt. Erst über das Anlegen einer positiven Spannung an die Anode werden die Elektronen auf diese beschleunigt. Besteht die Röhre nur aus Kathode und Anode, spricht man von einer Diode. Der Anodenstrom wird durch das Feld und ab einem Sättigungswert durch den Heizstrom des Filaments bestimmt.
Durch einen zusätzlichen sog. Wehneltzylinder vor der Kathode lässt sich der Anodenstrom unabhängig davon regeln. Der Wehneltzylinder fungiert als Steuergitter und ist gegenüber der Kathode negativ. Er wirkt so dem Beschleunigungsfeld der Anode entgegen. In diesem Fall spricht man von einer Triode.

Feldemission

Das Filament wird hier nur auf moderate Temperaturen je nach Material erwärmt. Durch das Aufheizen allein tritt noch keine Emission auf. Jedoch befinden sich dadurch viele Elektronen auf einem erhöhten Energieniveau oberhalb der Fermilevel. Legt man ein sogenanntes Extraktionsgitter über das Filament, welches gegenüber diesem positiv ist, erzeugt man im Raum zwischen beiden sehr hohe Feldstärken von mehreren Volt pro Mikrometer. Dies führt dazu, dass Elektronen aus dem Filament gezogen werden. Das Potenzial des sogenannten Vakuumlevels - des Potenzials, welches ein Elektron erreichen muss, um wirklich frei vom ursprünglichen Festkörper zu sein - wird durch das starke äußere Feld mit zunehmenden Abstand von der Oberfläche des Metalls/Filaments abgesenkt. Die Elektronen können nun dieses Potenzial zu Vakuumlevel hin durchtunneln und verlassen den Festkörper. Hinter dem Extraktionsgitter folgt wieder das negativ geladene Regelungsgitter - der Wehneltzylinder.
Feldemissions-Kathoden haben eine sehr kleine Emissionsfläche, so dass mit entsprechenden Elektronenlinsen auch ein kleiner Auftreffort auf der Anode erreicht werden kann. Dadurch ist der Ursprung der Röntgenstrahlung annähernd eine Punktquelle, was eine detailreichere Untersuchung auch sehr kleiner Objekte ermöglicht.

Anodenarten

Fest- oder Stehanode

 Bei einer feststehende Anode treffen die Elektronen auf eine typischerweise 1 x 10 mm² große Fläche. Im Bereich dieses Brennpunktes kann die Abnutzung des Anodenmaterials sehr hoch werden. Man verwendet z. B. in Kupfer eingelassene Wolfram-Platten. Wolfram besitzt eine besonders hohe Konversionsrate von elektrischer Energie in Röntgenstrahlungsenergie bei gleichzeitig hohem Schmelzpunkt.

Drehanode

Die Drehanode besteht üblicherweise aus einem Verbundteller aus einer Wolfram-Deckschicht und einer darunter liegenden, hoch wärmefesten Molybdän-Legierung, der über eine Welle an einem Rotor (Kurzschlussläufer) befestigt ist. Außerhalb der Röntgenröhre befindet sich das Spulenpaket des Stators zum Antrieb des Rotors nach dem Prinzip eines Asynchronmotors. Die Elektronen treffen auf den Rand des Tellers auf. Durch die Drehung des Tellers wird die Wärme aus dem Brennfleck auf dem Tellerrand verteilt. Dies führt zu einer längeren Lebenszeit der Anode und ermöglicht eine größere Strahlintensität, als sie bei feststehender Anode bis zum Aufschmelzen des Anodenmaterials erreichbar wäre. Die Umdrehungszahl solcher Anoden ist verschieden: während Anodenteller mit ca. 8 bis 12 cm Durchmesser mit 8000 bis 9000 Umdrehungen/Minute rotieren und meist nicht im Dauerbetrieb (die Lebensdauer von Kugellagern beträgt im Vakuum nur wenige hundert Stunden; der Teller wird daher beschleunigt und nach der Aufnahme wieder abgebremst), drehen Hochleistungsanoden mit ca. 20 cm Durchmesser bei 3500 bis 6000 Umdrehungen/Minute im Dauerbetrieb und vorzugsweise auf verschleißfreien hydrodynamischen Gleitlagern montiert. Auf Grund der starken Wärmeentwicklung (99 % der aufgewendeten Energie werden zu Wärme) muss der Anodenteller gekühlt werden. Dies geschieht bei Röhren mit Kugellagern nur durch Wärmeabstrahlung und bei Röhren mit Flüssigmetall-Gleitlagern zusätzlich durch direkte Wärmeableitung ins Innere des Lagers und dann in das Kühlwasser oder Kühlöl hinein. Ein weiterer Vorteil von hydrodynamischen Gleitlagern ist der verschleißfreie, fast geräuschlose Lauf, sodass auch aus diesem Grund die Beschleunigung und Abbremsung der Anode entfallen kann.

Schutzgehäuse

Das Schutzgehäuse eines Röntgenstrahlers hat mehrere Funktionen:

  • Es schützt die Röntgenröhre vor äußeren mechanischer Belastung.
  • Es enthält teilweise Transformatorenöl zur elektrischen Isolation (Vermeidung von Hochspannungsüberschlägen) sowie zur Kühlung der Röhre: Hochleistungröntgenstrahler wie z. B. in der Computertomographie werden durch Zwangszirkulation des Öls über einen Wärmetauscher gekühlt.
  • Es enthält erforderlichenfalls ein Strahlenaustrittsfenster aus Glas oder Berylliumfolie, um die Nutzstrahlen nach außen gelangen zu lassen.
  • Das Schutzgehäuse, welches meist aus Aluminium besteht, ist innen mit Blei ausgekleidet, um die Umgebung außerhalb des Strahlaustrittswinkels vor den Röntgenstrahlen zu schützen.

Anwendungen

  • Elektronik (Röntgenlithografie)
  • Durchleuchtungen in der Medizin, bei Gepäckkontrollen und zur zerstörungsfreien Werkstoffprüfung (z. B. Qualitätskontrolle von Schweißnähten)
  • Kristallstrukturanalyse durch Röntgenbeugung

spezielle Verfahren und Bauformen

Hochleistungsröntgenröhren, Weichstrahlröntgen, Röntgenlinsen, Phasenkontraströntgen, Mikrofokusröntgenröhren

 
Dieser Artikel basiert auf dem Artikel Röntgenstrahler aus der freien Enzyklopädie Wikipedia und steht unter der GNU-Lizenz für freie Dokumentation. In der Wikipedia ist eine Liste der Autoren verfügbar.
Ihr Bowser ist nicht aktuell. Microsoft Internet Explorer 6.0 unterstützt einige Funktionen auf Chemie.DE nicht.