My watch list
my.bionity.com  
Login  

Multifunctional nano-sized drug carriers based on reactive polypept(o)ides

15-Sep-2017

©Kristina Klinker/Olga Schäfer

Secondary structure formation enables morphology control while reactive groups in the polypeptide segment allow for adjustment of function.

In cooperation with researchers from the University of Tokyo and Gutenberg Research Awardee Prof. Kazunori Kataoka, Chemists from Mainz have been able to demonstrate that reactive polypept(o)ides constitute ideal building blocks to control morphology and function of carrier systems in a simple but precise manner.

Nano-sized carrier systems find medical application to improve pharmacologic properties of bioactive agents. For many therapeutic approaches, it is important that the carrier system can stably incorporate the cargo during circulation without inducing aggregation, while cargo should ideally only be released after successful cellular uptake. These requirements have thus far only been met by chemistry approaches with nanoparticles that are difficult to characterize. Consequently, clinical translation of these systems has been very difficult to achieve.

In cooperation with researchers from the University of Tokyo and Gutenberg Research Awardee Prof. Kazunori Kataoka, Chemists from Mainz have been able to demonstrate that reactive polypept(o)ides constitute ideal building blocks to control morphology and function of carrier systems in a simple but precise manner. Polypept(o)ides (polysarcosine-block-polypeptide copolymers) have emerged as interesting hybrid materials for drug carrier systems since they combine protein-resistance and high water-solubilty of polysarcosine with the stimuli-responsiveness, intrinsic multifunctionality, and secondary structure formation of polypeptides.

In this cooperative work, the researchers could show for the first time that the formation of β-sheets by the synthetic polypeptide segment can be exploited to deliberately manipulate the morphology of polymeric micelles, which enables the synthesis of either spherical or worm-like micelles from the same block copolymer. By employing reactive groups in the polypeptide segment of the block copolymer, micelles can be core cross-linked by dithiols, resulting in bio-reversible disulfide bonds. Due a difference in redox potential, disulfides are considered stable extracellularly, while they are rapidly reduced to free dithiols intracellularly, which leads to a disintegration of the carrier system and release of the cargo.

“In this way, a variety of different nanocarriers with different functions becomes readily accessible from one single block copolymer and a very selective post-polymerization step. This modular approach to nanoparticles with different function and morphology bears the advantage to address important questions with good comparability, such as the influence of size and shape on in vivo circulation times, biodistribution, tumor accumulation, cell uptake and therapeutic response since the same starting material is used” comments Matthias Barz.

First in vivo experiments have already demonstrated that these core-stabilized micellar nanocarriers exhibit stable circulation behavior, thus indicating that interactions with serum components or blood vessels are absent. Only by ensuring that no unspecific interactions occur within the complex biological setting, cellular uptake in desired specific cell populations seems feasible. The therapeutic potential of the described nanoparticle platform will be further investigated with regards to immunotherapy of malignant melanoma within the SFB 1066.

Facts, background information, dossiers
  • nanostructures
  • nanoparticles
  • malignant melanoma
  • hybrid materials
  • drug carriers
  • disulfides
  • disulfide bonds
  • copolymers
  • building blocks
More about Uni Mainz
  • News

    RNA modification important for brain function

    Researchers at the Institute of Molecular Biology (IMB) and Johannes Gutenberg University Mainz (JGU) in Germany have shown that a new way of regulating genes is vital for the activity of the nervous system. Researchers at the Institute of Molecular Biology (IMB) and Johannes Gutenberg Uni ... more

    Neonicotinoid pesticides cause harm to honeybees

    One possible cause of the alarming bee mortality we are witnessing is the use of the very active systemic insecticides called neonicotinoids. A previously unknown and harmful effect of neonicotinoids has been identified by researchers at the Mainz University Medical Center and Goethe Univer ... more

    New genetic risk factors for myopia discovered

    Myopia, also known as short-sightedness or near-sightedness, is the most common disorder affecting the eyesight and it is on the increase. The causes are both genetic and environmental. The Consortium for Refractive Error and Myopia (CREAM) has now made important progress towards understand ... more

  • Universities

    Johannes Gutenberg-Universität Mainz

    On behalf of the Johannes Gutenberg University Mainz, its faculty, staff, and students, I would like to welcome you to our University's web site. We invite you to visit us at any time - in person or by accessing this Internet presence - and explore life on our campus.Located in Mainz, a cit ... more

Your browser is not current. Microsoft Internet Explorer 6.0 does not support some functions on Chemie.DE