09-Dec-2019 - Max-Planck-Institut für Bildungsforschung

How extreme environmental conditions affect the human brain

Members of a polar research expedition have provided researchers from Charité – Universitätsmedizin Berlin and the Max Planck Institute for Human Development with an opportunity to study the effects of social isolation and extreme environmental conditions on the human brain. The researchers found changes to the dentate gyrus, an area of the hippocampus responsible for spatial thinking and memory.

Setting off on an Antarctic expedition to Neumayer-Station III, a German Antarctic research station run by the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI), means having to face temperatures as low as -50 degrees Celsius (-58 degrees Fahrenheit) and almost complete darkness during the winter months. Life at the research station offers little in the way of privacy or personal space. Contact with the outside world is minimal, and cutting one’s stay short is not an option – at least not during the long winter months. Emergency evacuation and deliveries of food and equipment are only possible during the relatively short summer. “This scenario offers us the opportunity to study the ways in which exposure to extreme conditions affect the human brain,” says study lead Dr. Alexander Stahn of Charité’s Institute of Physiology and Assistant Professor at the Perelman School of Medicine at the University of Pennsylvania. Working alongside Prof. Dr. Simone Kühn (Group Leader of the Lise Meitner Group for Environmental Neuroscience at the Max Planck Institute for Human Development), and supported by the AWI, Alexander Stahn set out to determine whether or not an Antarctic expedition produces changes to the structure and function of the human brain.

Five men and four women volunteered to participate in the study. They spent a total of 14 months at the Antarctic research station, 9 of which were spent in isolation from the outside world. Before, during and after their mission, the participants completed a set of computer-based cognitive tests. These included evaluations of concentration, memory, cognitive reaction time and spatial thinking. Regular blood tests were carried out to measure levels of a specific growth factor known as brain-derived neurotrophic factor (BDNF), a protein responsible for promoting the growth of nerve cells and synapses in the brain. The researchers used magnetic resonance imaging to determine brain structure in each of the participants before and after their mission. They did so in order to record changes in brain volume, paying particular attention to the hippocampus, a structure located deep inside the brain. “For this, we used a high-resolution methodology which makes it possible to take precise measurements of individual areas of the hippocampus,” says Prof. Kühn. A group of nine control participants underwent identical tests.

Measurements taken after the end of the exhibition revealed that the dentate gyrus, an area of the hippocampus with an important role in spatial thinking and memory formation, was smaller in members of the expedition team than in controls. These changes were also associated with a decrease in BDNF levels. After only three months in the Antarctic, levels of the growth factor had decreased to levels below those recorded prior to the start of the expedition and had not returned to normal one-and-a-half months after the expedition. Cognition tests showed effects on both spatial abilities and the so-called selective attention, which is necessary to ignore irrelevant information. Repeated testing is normally associated with improvements in test results. This learning effect, however, was reduced in participants whose dentate gyrus had decreased in volume, the reduction proportional to the extent of the volume lost.

“Given the small number of participants, the results of our study should be viewed with caution,” explains Dr. Stahn, adding: “They do, however, provide important information, namely – and this is supported by initial findings in mice – that extreme environmental conditions can have an adverse effect on the brain and, in particular, the production of new nerve cells in the hippocampal dentate gyrus.” As a next step, the researchers plan to study whether or not physical exercise might be able to counteract the observed changes in the brain.

Facts, background information, dossiers
  • brain
More about Max-Planck-Institut für Bildungsforschung
More about Max-Planck-Gesellschaft
  • News

    COVID-19 impacts on the Earth System

    COVID-19 immediately affects the health, economy and social well-being in our personal lives. Yet, the consequences on the entire Earth System, in particular the ones emerging from the widespread sheltering and lock-down measures, may be much more far-fetching and long-lasting. This has bee ... more

    Breaks in the genome

    Breaks and rearrangements in the genome can lead to severe diseases, even if all genes remain intact. Hi-C, a method to map the three-dimensional structure of chromosomes, promises more reliable and accurate diagnoses of such defects, but is not used in the clinic yet. A team of researchers ... more

    Neandertals may have had a lower threshold for pain

    Pain is mediated through specialized nerve cells that are activated when potentially harmful things affect various parts of our bodies. These nerve cells have a special ion channel that has a key role in starting the electrical impulse that signals pain and is sent to the brain. According t ... more

  • Videos

    Epigenetics - packaging artists in the cell

    Methyl attachments to histone proteins determine the degree of packing of the DNA molecule. They thereby determine whether a gene can be read or not. In this way, environment can influence the traits of an organism over generations. more

    Biomaterials - patent solutions from nature

    Animals and plants can produce amazing materials such as spider webs, wood or bone using only a few raw materials available. How do they achieve this? And what can engineers learn from them? more

    Chaperones - folding helpers in the cell

    Nothing works without the correct form: For most proteins, there are millions of ways in which these molecules, composed of long chains of amino acids, can be folded - but only one way is the right one. Researchers in the department "Cellular Biochemistry" at the Max Planck Institute for Bi ... more

  • Research Institutes

    Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V.

    The research institutes of the Max Planck Society perform basic research in the interest of the general public in the natural sciences, life sciences, social sciences, and the humanities. In particular, the Max Planck Society takes up new and innovative research areas that German universiti ... more

More about Charité
  • News

    COVID-19: Immune system on the wrong track

    Contrary to what has been generally assumed so far, a severe course of COVID-19 does not solely result in a strong immune reaction – rather, the immune response is caught in a continuous loop of activation and inhibition. Experts from Charité – Universitätsmedizin Berlin, the University of ... more

    HIV-1: The undercover agent

    Antibodies are not the only protection against viruses: At a much earlier stage, infected cells detect components of a virus with the help of internal sensors and trigger an immune response. This is an element of what is known as innate immunity, and helps prevent viruses from spreading fur ... more

    Could the blood of COVID-19 patients be used to predict disease progression?

    Researchers from Charité – Universitätsmedizin Berlin and the Francis Crick Institute have identified 27 proteins which are present at different levels in the blood of COVID-19 patients, depending on the severity of their symptoms. These biomarker profiles could be used to predict disease p ... more

  • Research Institutes

    Charité - Universitätsmedizin Berlin

    The Charité is one of the largest university hospitals in Europe. Here, 3800 doctors and scientists heal, do research and teach at the top international level. More than half of the German Nobel Prize winners in medicine and physiology come from the Charité, among them Emil von Behring, Ro ... more