18-Jun-2019 - Ruhr-Universität Bochum (RUB)

Drug resistance: Preventing drugs from being transported

Certain membrane proteins specialise in transporting molecules out of cells – a problem for the efficacy of cancer medication and antibiotics.

An international research team has investigated the transport mechanism of a bacterial membrane protein using an artificially produced antibody fragment. The transport proteins, called ABC exporters, are present, for instance, in the cell membranes of bacteria and in large quantities in cancer cells and are responsible for transporting small molecules out of the cells. Some transporters can pump antibiotics or chemotherapy agents out of the cells, thus rendering therapies ineffective. In the current study, researchers worked with isolated ABC exporters and showed how substrate transport is related to the energy drive of the protein and how both can be modified by an antibody fragment or by mutations.

For the study, Professor Enrica Bordignon and Professor Lars Schäfer from Ruhr-Universität Bochum, both members of the Cluster of Excellence Resolv, cooperated with Professor Markus Seeger from the University of Zurich and Professor Mikko Karttunen from the University of Western Ontario.

Multi-stage transport process

ABC exporters consume energy when transporting molecules out of the cells. They obtain this from the splitting of the energy storage molecule ATP on the inside of the membrane. Broadly speaking, the ABC exporter is comprised of three areas: the energy-providing motor inside the cell, a connector that extends through the cell membrane, and a gate on the outside of the membrane.

For the transport process, the ABC exporter opens inside the cell, takes in a molecule from the cytoplasm, and transports it to the other side of the membrane. There, the outer gate opens and the molecule is excreted – but only if the protein motor splits ATP inside. Only once the outer gate is closed again can the next transport process begin.

Motor switched off

The researchers developed an artificial antibody fragment, also known as a sybody, that docked at the isolated ABC exporter in the test tube. Using X-ray crystallography and electron spin resonance, the team showed that the sybody binds to the open outer gate. As a result of this, the gate was no longer able to close and thus no new transport process could be initiated. Consequently, the motor inside remained switched off; no more ATP was split.

The group confirmed the results in further experiments without the sybody. In these, they specifically replaced certain amino acids of the protein using genetic mutation; this also blocked the closing mechanism of the outer gate and ATP splitting.

“Our analyses have shown that the mechanism to open and close the outer gate is structurally related to the splitting of the energy supplier ATP on the inside,” describes Enrica Bordignon. “Our results are fundamental research,” says the head of the Bocum-based EPR Spectroscopy Research Group. “We hope to use this information to open up new approaches to combat drug resistance.”

Facts, background information, dossiers
More about Ruhr-Universität Bochum
  • News

    Mouthwashes could reduce the risk of coronavirus transmission

    Sars-Cov-2 viruses can be inactivated using certain commercially available mouthwashes. This was demonstrated in cell culture experiments by virologists from Ruhr-Universität Bochum together with colleagues from Jena, Ulm, Duisburg-Essen, Nuremberg and Bremen. High viral loads can be detect ... more

    Rapid test for the determination of antibodies against Sars-Cov-2

    To determine immunity to Sars-Cov-2 and the effectiveness of potential vaccines, the amount of neutralising antibodies in the blood of recovered or vaccinated individuals must be determined. A traditional neutralisation test usually takes two to three days and must be carried out with infec ... more

    Immunoprotein impairs Sars-Cov-2

    A protein produced by the human immune system can strongly inhibit corona viruses, including Sars-Cov-2, the pathogen causing Covid-19. An international team from Germany, Switzerland and the USA successfully showed that the LY6E-Protein prevents coronaviruses from causing an infection. “Th ... more

More about Universität Zürich
  • News

    Hedonism Leads to Happiness

    Relaxing on the sofa or savoring a delicious meal: Enjoying short-term pleasurable activities that don’t lead to long-term goals contributes at least as much to a happy life as self-control, according to new research from the University of Zurich and Radboud University in the Netherlands. T ... more

    Blueprint of Oxytocin Receptor Facilitates Development of New Autism Drugs

    Oxytocin plays a role in various mental health and sexual reproduction disorders. Researchers at the University of Zurich have now determined the three-dimensional structure of the oxytocin receptor to which the hormone binds. This knowledge could promote the development of novel drugs to t ... more

    Genetic Malfunction of Brain Astrocytes Triggers Migraine

    Neuroscientists of the University of Zurich shed a new light on the mechanisms responsible for familial migraine: They show that a genetic dysfunction in specific brain cells of the cingulate cortex area strongly influences head pain occurrence. Migraine is one of the most disabling disorde ... more