My watch list
my.bionity.com  
Login  

Moving the MRI goalposts

28-Nov-2013

Scientists in the UK have developed a new class of MRI (magnetic resonance imaging) agents that promise to deliver clearer images more quickly.

Chemical shifts from proton NMR normally fall between 0-12ppm, but water and fat resonate at 4.7 and 1.3ppm respectively, causing noise that can overlap with MRI probe signals.

Now, David Parker and his team at the University of Durham have developed new probes, comprised of lanthanide complexes containing a t-butyl group, that shift the spectral window of MRI scans well away from these interfering signals. Parker describes this concept as “moving the goalposts.”

He said: “In any NMR experiment you are chasing sensitivity. We have enhanced the intrinsic ability to observe an MRI probe signal by a factor of 20.”

The distance between the lanthanide and the t-butyl group in the probes is fixed to optimise the rate of decay of the t-butyl signal, as well as its chemical shift. Using the new probes, the researchers were able to acquire data just a few minutes after administering them. They showed that the signal from the lanthanide-induced relaxation of the nine protons in the t-butyl group was shifted by up to 80ppm.

Parker says the new probes could lead to the development of new imaging experiments where the probes can be localised for defined periods of time in particular regions of the body.

 

Facts, background information, dossiers
  • Durham University
More about Durham University
More about Royal Society of Chemistry
  • News

    Therapeutic screening for Alzheimer’s disease

    Scientists in Canada and the United States have developed a chip sensor for monitoring how drug candidates alter amyloid-β peptide aggregation that they hope could be used to find new treatments for Alzheimer’s disease. Research into Alzheimer’s disease has shown that the self-aggregation o ... more

    Using bacteria to make electrodes

    Scientists in France have produced hematite using a bacterial pathway for use as an electrode material in Li-ion technologies. Currently, most commercial electrode materials for Li-ion technologies are prepared using the ceramic method, which requires long heating periods at high temperatur ... more

    High-throughput drug screening in 3D

    Scientists in China have developed a simple microchip that enables quick and inexpensive high-throughput screening of potential drug candidates in 3D cell cultures. Scientists often use cell-based high-throughput screening in the first stage of drug design as a technique to quickly identify ... more

  • Videos

    When Food met Pharma: Delivery Strategies for Nutraceuticals

    With growing prevalence of lifestyle-associated diseases, including obesity, Type II diabetes and cardiovascular disease, there is an urgent need and demand to try to prevent the onset of these diseases within our growing population. Nutraceuticals, along with appropriate diet and exercise, ... more

    Everest Lab: The Science Of High Altitude Survival

    What happens to your body when you push it to somewhere it’s not built to go – to the top of the world?With summit kit, interactive experiments & stunning videos from his trek to the highest lab in the world at Everest Base Camp, join TV & YouTube Science Presenter Greg Foot to find out.Gre ... more

Your browser is not current. Microsoft Internet Explorer 6.0 does not support some functions on Chemie.DE