To use all functions of this page, please activate cookies in your browser.
my.bionity.com
With an accout for my.bionity.com you can always see everything at a glance – and you can configure your own website and individual newsletter.
- My watch list
- My saved searches
- My saved topics
- My newsletter
Short-chain dehydrogenase
The short-chain dehydrogenases/reductases family (SDR)[1] is a very large family of enzymes, most of which are known to be NAD- or NADP-dependent oxidoreductases. As the first member of this family to be characterised was Drosophila alcohol dehydrogenase, this family used to be called[2][3][4] 'insect-type', or 'short-chain' alcohol dehydrogenases. Most member of this family are proteins of about 250 to 300 amino acid residues. Most dehydrogenases possess at least 2 domains[5], the first binding the coenzyme, often NAD, and the second binding the substrate. This latter domain determines the substrate specificity and contains amino acids involved in catalysis. Little sequence similarity has been found in the coenzyme binding domain although there is a large degree of structural similarity, and it has therefore been suggested that the structure of dehydrogenases has arisen through gene fusion of a common ancestral coenzyme nucleotide sequence with various substrate specific domains[5]. Additional recommended knowledgeSubfamilies
Human proteins containing this domain17BHSDI; BDH1; BDH2; CBR1; CBR3; CBR4; DCXR; DECR1; DECR2; DHRS1; DHRS10; DHRS13; DHRS2; DHRS3; DHRS4; DHRS4L2; DHRS7; DHRS7B; DHRS8; DHRS9; DHRSX; FASN; FVT1; HADH2; HPGD; HSD11B1; HSD11B2; HSD17B1; HSD17B10; HSD17B12; HSD17B13; HSD17B2; HSD17B3; HSD17B4; HSD17B6; HSD17B7; HSD17B7P2; HSD17B8; HSDL1; HSDL2; PECR; QDPR; RDH10; RDH11; RDH12; RDH13; RDH14; RDH16; RDH5; RDH8; RDHE2; RDHS; SCDR10; SPR; WWOX; References
Categories: Protein domains | Single-pass transmembrane proteins |
|||||||||||||||||||
This article is licensed under the GNU Free Documentation License. It uses material from the Wikipedia article "Short-chain_dehydrogenase". A list of authors is available in Wikipedia. |
- 5T4
- Finding new weapons in Nature`s battlesites - Genomic studies open up a wealth of bioactive small molecules in insect-killing bacteria
- Shedding light on the origin of complex life forms - Researchers cultivate "missing link" microorganism
- Idaho_Technology
- Analog DNA circuit does math in a test tube - DNA computers could one day be programmed to diagnose and treat disease