My watch list  



Metaphase, from the ancient Greek μετα (after) and φασις (stage), is a stage of mitosis in the eukaryotic cell cycle in which condensed chromosomes, carrying genetic information, align in the middle of the cell before being separated into each of the two daughter cells.


Preceded by events in prometaphase and followed by anaphase, microtubules formed in prophase have already found and attached themselves to kinetochores in metaphase. The centromeres of the chromosomes convene themselves on the metaphase plate, an imaginary line that is equidistant from the two centrosome poles. This even alignment is due to the counterbalance of the pulling powers generated by the opposing kinetochores, analogous to a tug of war between equally strong people. In certain types of cells, chromosomes do not line up at the metaphase plate and instead move back and forth between the poles randomly, only roughly lining up along the midline.

Early events of metaphase can coincide with the later events of prometaphase, as chromosomes with connected kinetochores will start the events of metaphase individually before other chromosomes with unconnected kinetochores that are still lingering in the events of prometaphase.

One of the cell cycle checkpoints occurs during prometaphase and metaphase. Only after all chromosomes have become aligned at the metaphase plate, when every kinetochore is properly attached to a bundle of microtubules, does the cell enter anaphase. It is thought that unattached or improperly attached kinetochores generate a signal to prevent premature progression to anaphase, even if most of the kinetochores have been attached and most of the chromosomes have been aligned. Such a signal creates the mitotic spindle checkpoint. This would be accomplished by regulation of the Anaphase Promoting Complex, securin, and separase.

Metaphase in the study of cancer and genetics

The analysis of metaphase chromosomes is one of the main tools of cancer cytogenetics. Malignant cells from solid tumors or leukemia samples are grown in short term culture and dropped onto microscope slides to generate metaphase preparations. Staining of the slides, often with Giemsa or Quinacrine, produces a pattern of in total up to several hundred bands. Inspection of the stained metaphases allows the determination of numerical and structural changes in the tumor cell genome, for example, losses of chromosomal segments or translocations, which may lead to chimeric oncogenes, such as bcr-abl in Chronic myelogenous leukemia.

Additionally, normal metaphase spreads are used as hybridization matrix for comparative genomic hybridization (CGH) experiments.

This article is licensed under the GNU Free Documentation License. It uses material from the Wikipedia article "Metaphase". A list of authors is available in Wikipedia.
Your browser is not current. Microsoft Internet Explorer 6.0 does not support some functions on Chemie.DE