My watch list
my.bionity.com  
Login  

Interventional magnetic resonance imaging



Interventional magnetic resonance imaging, also Interventional MRI, is the use of magnetic resonance imaging (MRI) to do interventional radiology procedures.

Because of the lack of harmful effects on the patient and the operator, MR is well suited for "interventional radiology", where the images produced by an MRI scanner are used to guide a minimally-invasive procedure intraoperatively and/or interactively. However, the non-magnetic environment required by the scanner and the strong magnetic radiofrequency and quasi-static fields generated by the scanner hardware require the use of specialized instruments. Often required is the use of an "open bore" magnet which permits the operating staff better access to patients during the operation. Such open bore magnets are often lower field magnets, typically in the 0.2 tesla range, which decreases their sensitivity but also decreases the Radio Frequency power potentially absorbed by the patient during a protracted operation. Higher field magnet systems are beginning to be deployed in intraoperative imaging suites, which can combine high-field MRI with a surgical suite and even CT in a series of interconnected rooms. Specialty high-field interventional MR devices, such as the IMRIS system, can actually bring a high-field magnet to the patient within the operating theatre, permitting the use of standard surgical tools while the magnet is in an adjoining space.

See also

External links

  • Interventional MRI- University of California - San Francisco
 
This article is licensed under the GNU Free Documentation License. It uses material from the Wikipedia article "Interventional_magnetic_resonance_imaging". A list of authors is available in Wikipedia.
Your browser is not current. Microsoft Internet Explorer 6.0 does not support some functions on Chemie.DE