Relieving chronic pain
Each year, more than 35,000 patients in the United States are implanted with spinal cord stimulators to treat chronic pain. Unfortunately, up to half of such patients receive only very limited pain relief. To help more patients, scientists are developing a new device to deliver therapeutic stimulation in a more targeted way, reaching nerve fibers deep within the spinal cord.
Standard devices, first introduced in 1967, work by delivering a low electrical current to the spinal cord that interferes with the body's pain signals. Such devices, however, are only able to deliver therapeutic current to a thin layer of nerve fibers along the outside of the spinal cord. That's because the electrodes delivering the current are placed within the cerebrospinal fluid, which is itself conductive and so dissipates some of the current.
The new device, called the Human Spinal Cord Modulation System (HSCMS), is designed to be in direct contact with the spinal cord, held in place by a small loop of wire. Because the spinal cord moves during normal patient activity, that loop has to exert enough pressure for the HSCMS to stay in contact with the spinal cord but not so much that the pressure restricts blood flow or causes direct injury.
To test the pressure exerted by the HSCMS's design, researchers attached the device to a silicone model of the spinal cord previously developed to have the same biomechanical characteristics as living tissue. They then slowly compressed the loop, measuring the pressure exerted on the silicone model. The results, which were accepted for publication in the American Institute of Physics (AIP) Journal of Applied Physics, show the device's loop design exerts pressure at a similar level as is normally found on the spinal cords of healthy people, and so passes an important safety test for further development of the device.
Original publication
M. S. Oliynyk, G. T. Gillies, H. Oya, S. Wilson, C. G. Reddy, et al., "Dynamic loading characteristics of an intradural spinal cord stimulator", Journal of Applied Physics, 2013
Original publication
M. S. Oliynyk, G. T. Gillies, H. Oya, S. Wilson, C. G. Reddy, et al., "Dynamic loading characteristics of an intradural spinal cord stimulator", Journal of Applied Physics, 2013
Organizations
Other news from the department science

Get the life science industry in your inbox
By submitting this form you agree that LUMITOS AG will send you the newsletter(s) selected above by email. Your data will not be passed on to third parties. Your data will be stored and processed in accordance with our data protection regulations. LUMITOS may contact you by email for the purpose of advertising or market and opinion surveys. You can revoke your consent at any time without giving reasons to LUMITOS AG, Ernst-Augustin-Str. 2, 12489 Berlin, Germany or by e-mail at revoke@lumitos.com with effect for the future. In addition, each email contains a link to unsubscribe from the corresponding newsletter.