My watch list
my.bionity.com  
Login  

Double strike against tuberculosis

Beta-lactone inhibits mycomenbrane biosynthesis and potentiates antibiotics

02-Jan-2018

Christian Fetzer / TUM

Dr. Johannes Lehmann (left) and Prof. Stephan A. Sieber examine test results on the antibacterial effect of various substances.

In search of new strategies against life-threatening tuberculosis infections, a team from the Technical University of Munich (TUM), as well as Harvard University and Texas A&M University in the USA have found a new ally. They discovered a substance that interferes with the mycomembrane formation of the bacterium. It is effective even in low concentrations and when combined with known antibiotics their effectiveness is improved by up to 100-fold.

Among the greatest challenges when treating life-threatening tuberculosis infections is the increasing resistance to antibiotics. But the pathogen itself also makes the life of doctors difficult: its dense mycomembrane hampers the effect of many medications. A team of scientists headed by Stephan A. Sieber, Professor of Organic Chemistry at TU Munich, has discovered a substance that perturbs the formation of this membrane significantly.

The mycomembrane of the tuberculosis pathogen Mycobacterium tuberculosis consists of a lipid double layer that encapsulates the cell wall, forming an exterior barrier. Structural hallmarks are mycolic acids, branched beta-hydroxy fatty acids with two long hydrocarbon chains. The team hypothesizes that similarly structured beta lactones could “mask” themselves as mycolic acid to enter the mycolic acid metabolic pathways and then block the decisive enzymes.

Helpful disrupter

In the context of an extensive search, the interdisciplinary team of scientists hit the bullseye with the beta lactone EZ120. It does indeed inhibit the biosynthesis of the mycomembrane and kills mycobacteria effectively. Using enzyme assays and mass spectroscopy investigations, Dr. Johannes Lehmann, a researcher at the Chair of Organic Chemistry II at TU Munich, demonstrated during his doctoral work that the new inhibitor blocks especially the enzymes Pks13 and Ag85, which play a key role in the development of mycomembranes.

EZ120 is effective even in low doses, easily passes the mycomembrane and exhibits only low toxicity to human cells. The combined application of this substance with known antibiotics showed a synergistic effect leading to significantly increased effectiveness."Vancomycin, a common antibiotic, and EZ120 work together very well," says Prof. Sieber, who heads the Chair of Organic Chemistry II. "When used together, the dose can be reduced over 100-fold.

"The scientists suspect that disrupting the mycomembrane enables antibiotics to enter the bacteria more easily. This is a new mode of action and might be a starting point for novel tuberculosis therapies.

More about TU München
  • News

    More than just a good flavor

    Not only do citric acid and spicy 6-gingerol from ginger add special flavors to food and beverages; both substances also stimulate the molecular defenses in human saliva. That is the result of a human clinical trial by a team from the Technical University of Munich (TUM) and the Leibniz-Ins ... more

    Organic insect deterrent for agriculture

    Traditional insecticides are killers: they not only kill pests, they also endanger bees and other beneficial insects, as well as affecting biodiversity in soils, lakes, rivers and seas. A team from the Technical University of Munich (TUM) has now developed an alternative: A biodegradable ag ... more

    In the beginning was the phase separation

    The question of the origin of life remains one of the oldest unanswered scientific questions. A team at the Technical University of Munich (TUM) has now shown for the first time that phase separation is an extremely efficient way of controlling the selection of chemical building blocks and ... more

  • Universities

    Technische Universität München

    Since its inception in 1868, TUM has established its reputation as a foremost academic institution with 6 Nobel prizes and many other prestigious awards, making it repeatedly the number one German university in various rankings, including the most recent ones. Our university covers a large ... more

    Technische Universität München im Wissenschaftszentrum Straubing

    more

Your browser is not current. Microsoft Internet Explorer 6.0 does not support some functions on Chemie.DE