My watch list
my.bionity.com  
Login  

Double strike against tuberculosis

Beta-lactone inhibits mycomenbrane biosynthesis and potentiates antibiotics

02-Jan-2018

Christian Fetzer / TUM

Dr. Johannes Lehmann (left) and Prof. Stephan A. Sieber examine test results on the antibacterial effect of various substances.

In search of new strategies against life-threatening tuberculosis infections, a team from the Technical University of Munich (TUM), as well as Harvard University and Texas A&M University in the USA have found a new ally. They discovered a substance that interferes with the mycomembrane formation of the bacterium. It is effective even in low concentrations and when combined with known antibiotics their effectiveness is improved by up to 100-fold.

Among the greatest challenges when treating life-threatening tuberculosis infections is the increasing resistance to antibiotics. But the pathogen itself also makes the life of doctors difficult: its dense mycomembrane hampers the effect of many medications. A team of scientists headed by Stephan A. Sieber, Professor of Organic Chemistry at TU Munich, has discovered a substance that perturbs the formation of this membrane significantly.

The mycomembrane of the tuberculosis pathogen Mycobacterium tuberculosis consists of a lipid double layer that encapsulates the cell wall, forming an exterior barrier. Structural hallmarks are mycolic acids, branched beta-hydroxy fatty acids with two long hydrocarbon chains. The team hypothesizes that similarly structured beta lactones could “mask” themselves as mycolic acid to enter the mycolic acid metabolic pathways and then block the decisive enzymes.

Helpful disrupter

In the context of an extensive search, the interdisciplinary team of scientists hit the bullseye with the beta lactone EZ120. It does indeed inhibit the biosynthesis of the mycomembrane and kills mycobacteria effectively. Using enzyme assays and mass spectroscopy investigations, Dr. Johannes Lehmann, a researcher at the Chair of Organic Chemistry II at TU Munich, demonstrated during his doctoral work that the new inhibitor blocks especially the enzymes Pks13 and Ag85, which play a key role in the development of mycomembranes.

EZ120 is effective even in low doses, easily passes the mycomembrane and exhibits only low toxicity to human cells. The combined application of this substance with known antibiotics showed a synergistic effect leading to significantly increased effectiveness."Vancomycin, a common antibiotic, and EZ120 work together very well," says Prof. Sieber, who heads the Chair of Organic Chemistry II. "When used together, the dose can be reduced over 100-fold.

"The scientists suspect that disrupting the mycomembrane enables antibiotics to enter the bacteria more easily. This is a new mode of action and might be a starting point for novel tuberculosis therapies.

More about TU München
  • News

    Food activates brown fat

    Brown fat consumes energy, which is the reason why it could be important for preventing obesity and diabetes. Working together with an international team, researchers at the Technical University of Munich (TUM) were able to demonstrate that food also increases the thermogenesis of brown fat ... more

    Alzheimer's disease and diabetes: Hope for inhibitors

    Effective therapeutics to counteract the formation of amyloid plaques in Alzheimer's disease and type 2 diabetes are not yet available. Scientists at the Technical University of Munich (TUM) have now come a little bit closer to a solution:  They have described a new class of designed macroc ... more

    Pungent tasting substance in ginger reduces bad breath

    The pungent compound 6-gingerol, a constituent of ginger, stimulates an enzyme contained in saliva – an enzyme which breaks down foul-smelling substances.  It thus ensures fresh breath and a better aftertaste. Citric acid, on the other hand, increases the sodium ion content of saliva, makin ... more

  • Universities

    Technische Universität München

    Since its inception in 1868, TUM has established its reputation as a foremost academic institution with 6 Nobel prizes and many other prestigious awards, making it repeatedly the number one German university in various rankings, including the most recent ones. Our university covers a large ... more

    Technische Universität München im Wissenschaftszentrum Straubing

    more

Your browser is not current. Microsoft Internet Explorer 6.0 does not support some functions on Chemie.DE