My watch list  

Parathyroid gland

Parathyroid gland
Endocrine system. (Parathyroid gland not pictured, but are present on surface of thyroid gland, as shown below.)
Thyroid and parathyroid.
Latin glandula parathyroidea inferior, glandula parathyroidea superior
Gray's subject #273 1271
Artery superior thyroid artery, inferior thyroid artery,
Vein superior thyroid vein, middle thyroid vein, inferior thyroid vein, thyreoidea ima
Nerve middle cervical ganglion, inferior cervical ganglion
Precursor neural crest mesenchyme and third and fourth pharyngeal pouch endoderm
MeSH Parathyroid+Glands
Dorlands/Elsevier g_06/{{{DorlandsSuf}}}

The parathyroid glands are small endocrine glands in the neck, usually located behind the thyroid gland, which produce parathyroid hormone. In rare cases the parathyroid glands are located within the thyroid glands. Most often there are four parathyroid glands, but some people have six or even eight.



The parathyroid glands are four or more small glands located on the posterior surface of the thyroid gland. Histologically they are quite easily recognizable from the thyroid as they have densely packed cells in contrast with the follicle structure of the thyroid. [1] However at surgery they are harder to differentiate from the thyroid or fat.

They distinguish themselves from the thyroid gland histologically as they contain two types of cells:[2]

Name Staining Quantity Size Function
parathyroid chief cells darker many[3] smaller manufacture PTH (see below).
oxyphil cells lighter few larger function unknown.[4][5]


The parathyroid glands were discovered by Ivar Sandstrom, a Swedish medical student, in 1880. [6] It was the last major organ to be recognized in humans.


The sole function of the parathyroid glands is to maintain the body's calcium level within a very narrow range, so that the nervous and muscular systems can function properly.

When blood calcium levels drop below a certain point, calcium-sensing receptors in the parathyroid gland are activated to release hormone into the blood.

Parathyroid hormone (PTH, also known as parathormone) is a small protein that takes part in the control of calcium and phosphate homeostasis, as well as bone physiology. Parathyroid hormone has effects antagonistic to those of calcitonin. It increases blood calcium levels by stimulating osteoclasts to break down bone and release calcium. It also increases gastrointestinal calcium absorption by activating vitamin D, and promotes calcium uptake by the kidneys.

Role in disease

Hyperparathyroidism and related conditions

The single major disease of parathyroid glands is overactivity of one or more of the parathyroid lobes, which make too much parathyroid hormone causing a potentially serious calcium imbalance. This is called hyperparathyroidism; it leads to hypercalcemia and osteitis fibrosa cystica. Since hyperparathyroidism was first described in 1925, the symptoms have become known as "moans, groans, stones, and bones." The primary treatment for this disease is the surgical removal of the faulty gland.

Modern high frequency ultrasound can see parathyroid masses, even before they cause high calcium. They are called parathyroid incidentalomas. If a patient has elevated calcium, the ultrasound can be used to locate the abnormal glands. The use of ultrasound guided FNA, and parathyroid hormone washings can confirm the abnormal glands. A blood calcium 15-30 minutes after the biopsy can help determine if the disease is caused by a single abnormal gland or multiple glands.

A drop in serum calcium suggests a single source, and no drop suggests multiple glands. This, with a non-localizing Sestamibi scan would point toward a neck exploration, rather than a minimally invasive method aimed a single gland disease.

A Sestamibi scan is often used to determine which parathyroid gland(s) are responsible for overproduction of parathyroid hormone.

Another related condition is called secondary hyperparathyroidism (high-per-parr-uh-THIGH-royd-izm), or secondary HPT - common in patients with chronic kidney disease on dialysis. In secondary HPT, the parathyroid glands make too much parathyroid hormone (PTH), and the kidneys do not produce enough vitamin D, and calcium and phosphorus are out of balance. Even though one may not have any symptoms, treating secondary HPT is important. Cinacalcet (Sensipar®) is a medicine that can help treat such dialysis patients and is available by prescription only.

Hypoparathyroidism and related conditions

Embryology and Evolution

The parathyroid glands originate from the interaction of neural crest mesenchyme and third and fourth pharyngeal pouch endoderm.

Genetically, Eya-1 (transcripitonal co-activator), Six-1 (a homeobox transcription factor), and Gcm-2 (a transcription factor) have been associated with the development of the parathyroid gland, and alterations in these genes alters parathyroid gland development.

The conserved homology of genes and calcium sensing receptors in fish gills with those in the parathryroid glands of birds and mammals is recognized by evolutionary developmental biology as evolution using genes and gene networks in novel ways to generate new structures with some similar functions and novel functions.

Additional images


  1. ^ Histology at BU 15001ooa
  2. ^ Histology at BU 15002loa
  3. ^ Histology at USC end/c_28
  4. ^ Histology at OU 40_06
  5. ^ Histology at USC end/c_34
  6. ^ Eknoyan G.. (1995). "A history of the parathyroid glands". Am J Kidney Dis 26 (5): 801-7. PMID 7485136.
  • Parathyroid disease and treatments discussed in layman's terms at
  • Endocrine Web at
  • The origin of the parathyroid gland at
  • Human Gland Probably Evolved From Gills at
  • The role of the endoderm in the development and evolution of the pharyngeal arches at
  • Deep homologies in the pharyngeal arches at
  • Parathyroid+gland at eMedicine Dictionary
  • Histology at USC end/c_29
  • Virtual Slidebox at Univ. Iowa Slide 149
This article is licensed under the GNU Free Documentation License. It uses material from the Wikipedia article "Parathyroid_gland". A list of authors is available in Wikipedia.
Your browser is not current. Microsoft Internet Explorer 6.0 does not support some functions on Chemie.DE