My watch list  

Accounting for Population Structure in Gene-by-Environment Interactions in Genome-Wide Association Studies Using Mixed Models

Although genome-wide association studies (GWASs) have discovered numerous novel genetic variants associated with many complex traits and diseases, those genetic variants typically explain only a small fraction of phenotypic variance. Factors that account for phenotypic variance include environmental factors and gene-by-environment interactions (GEIs). Recently, several studies have conducted genome-wide gene-by-environment association analyses and demonstrated important roles of GEIs in complex traits. One of the main challenges in these association studies is to control effects of population structure that may cause spurious associations. Many studies have analyzed how population structure influences statistics of genetic variants and developed several statistical approaches to correct for population structure. However, the impact of population structure on GEI statistics in GWASs has not been extensively studied and nor have there been methods designed to correct for population structure on GEI statistics. In this paper, we show both analytically and empirically that population structure may cause spurious GEIs and use both simulation and two GWAS datasets to support our finding. We propose a statistical approach based on mixed models to account for population structure on GEI statistics. We find that our approach effectively controls population structure on statistics for GEIs as well as for genetic variants.

Authors:   Jae Hoon Sul; Michael Bilow; Wen-Yun Yang; Emrah Kostem; Nick Furlotte; Dan He; Eleazar Eskin
Journal:   PLoS Genetics
Volume:   12
edition:   3
Year:   2016
Pages:   e1005849
DOI:   10.1371/journal.pgen.1005849
Publication date:   04-Mar-2016
Facts, background information, dossiers
More about Public Library of Science
Your browser is not current. Microsoft Internet Explorer 6.0 does not support some functions on Chemie.DE