My watch list
my.bionity.com  
Login  

Muscles out of the spray can

One step ahead towards the artificial heart

09-Nov-2017

Lukas Weidenbacher

Imitating nature: A network of muscle fibers grows on spun plastic scaffold. Under a confocal laser scanning microscope the muscle fibers appear in red, and the cell nuclei in blue.

Lukas Weidenbacher

As early as 7 days later, the cells join up in the scaffold (white) and form elongated muscle fibers (yellow), as shown in this stained electron microscope image.

An artificial heart would be an absolute lifesaver for people with cardiac failure. However, to recreate the complex organ in the laboratory, one would first need to work out how to grow multi-layered, living tissues. Researchers at Empa have now come one step closer to this goal: by means of a spraying process, they have created functioning muscle fibers.

Anyone who requires a transplant because of cardiac failure must hope for a suitable donor organ. An artificial heart that does not trigger any rejection reactions in the body after implantation would be an elegant alternative. The Zurich Heart project of the research alliance University Medicine Zurich, of which Empa is a partner, is currently developing such an artificial heart. To ensure that the laboratory-made pump is tolerated by the body, the aim is to envelop and coat it in human tissue, much like a cloak of invisibility. Until now, the culturing of multi-layered functional tissues has been a major challenge in the up-and-coming area of "Tissue Engineering". Empa researchers have now succeeded in letting cells develop into muscle fibers in a three-dimensional synthetic polymer scaffold.

"The human heart is naturally composed of several layers of different tissues," explains Lukas Weidenbacher of Empa's laboratory for Biomimetic Membranes and Textiles in St. Gallen. Muscle fibers in the lining play a decisive role in the structure, for they are responsible for the stability and flexibility of the constantly beating heart. Culturing muscle fibers that grow in multiple layers is challenging, however, because the cells must first be embedded in a three-dimensional scaffold. "To be sure, it is possible to create three-dimensional polymer structures that closely resemble human tissue, by means of so-called electrospinning for example," says Weidenbacher. During this process, gossamer-like threads of liquid polymer are interlaced in the manner of natural tissue. But the harmful solvents that are required for this process are poison for the sensitive cells.

Slobbery protection

The researchers at Empa have therefore packaged the valuable cells in protective capsules. Gelatin sheaths contain one to two cells each. This protects the cells from the solvents. A special spraying process, called electrospraying, makes it possible to inject the capsules into the pores of the spun scaffold. "Cells that are protected in this way survive the spraying very well," explains the materials scientist. And once the cells have settled at the desired location, the gelatinous capsule dissolves within minutes.

Scanning electron microscope images show that the cells feel at home in their synthetic polymer nest: As soon as the capsules have dissolved, the immature precursor cells begin to join up and to mature to form elongated muscle fibers. The aim is to end up with a structure that resembles natural muscle tissue as closely as possible. "As the artificial heart is constantly perfused by the blood circulation, it is important that the surfaces are of a quality that prevents coagulation," says Weidenbacher.

Invisible to the immune system

The researchers have used the immature muscle cells of a mouse cell line for their series of experiments. These precursor cells differentiated in the scaffold and produced proteins that normally occur in muscle. However, in the future the aim is to clad the implantable artificial heart with cells that derive from the patients themselves. In this way, a personal heart could be grown for the patient that remains "invisible" to the body's immune system.

Facts, background information, dossiers
  • artificial muscles
  • Empa
  • polymers
  • heart
  • electrospinning
More about Empa
  • News

    Sticking instead of stitching

    In spite of medical advances, wound-related complications arising after operations can still be life-threatening. In order to avoid these complications in the future, a new nanoparticle-based tissue glue has been developed by researchers at Empa. There are internal and external areas of the ... more

    Medication for the unborn baby

    An Empa team has succeeded in developing a new three-dimensional cell model of the human placental barrier. The "model organ" can quickly and reliably deliver new information on the intake of substances, such as nano-particles, by the placental barrier and on any possible toxic effects for ... more

    Gelatine instead of forearm

    The characteristics of human skin are heavily dependent on the hydration of the tissue - in simple terms, the water content. This also changes its interaction with textiles. Up to now, it has only been possible to determine the interaction between human skin and textiles by means of clinica ... more

  • Research Institutes

    Empa - Swiss Federal Laboratories for Materials Testing and Research

    Empa is an interdisciplinary research and services institution for material sciences and technology development within the ETH Domain. Empa’s research and development activities are oriented to meeting the requirements of industry and the needs of our society, and link together applications ... more

    Empa (Eidgenössische Materialprüfungs- und Forschungsanstalt)

    Empa is an interdisciplinary research and services institution for material sciences and technology development within the ETH Domain. Empa’s research and development activities are oriented to meeting the requirements of industry and the needs of our society, and link together applications ... more

    Empa

    Empa is an interdisciplinary research and services institution for material sciences and technology development within the ETH Domain. Empa’s research and development activities are oriented to meeting the requirements of industry and the needs of our society, and link together applications ... more

Your browser is not current. Microsoft Internet Explorer 6.0 does not support some functions on Chemie.DE