My watch list
my.bionity.com  
Login  

More than just a good flavor

Flavoring substances stimulate immune defenses

19-Jun-2018

pexels; pixabay.com; CC0

Not only do citric acid and spicy 6-gingerol from ginger add special flavors to food and beverages; both substances also stimulate the molecular defenses in human saliva. That is the result of a human clinical trial by a team from the Technical University of Munich (TUM) and the Leibniz-Institute for Food Systems Biology.

Human saliva is a complex, watery mixture made up of vastly different components. In addition to mucosal and immune cells, it contains a large number of molecules that perform a wide variety of biological functions. Not only does saliva play an important role in dietary intake, but it is also crucial to maintaining the health of one’s teeth, gums, and oral mucosa.

At the same time, it also represents the first bulwark against external pathogens. For this purpose, saliva contains various antimicrobial molecules, including the antibacterial lysozyme. These are part of the innate molecular immune system.

It has been proven that factors such as age, health, and what someone eats and drinks influence the composition of saliva. However, little is known about the effects of individual food constituents.

In order to learn more about this, a team of scientists led by Professor Thomas Hofmann, head of the Leibniz-Institute for Food Systems Biology at TUM, studied the influence of the following flavors on the composition of human saliva: citric acid (sour), the sweetener aspartame (sweet), iso-alpha acids (bitter), the flavor enhancer monosodium glutamate (umami), table salt (salty), 6-gingerol (spicy), and the substances contained in Sichuan pepper —hydroxy-alpha-sanshool (tingling) and hydroxy-beta-sanshool (numbing).

How the Molecular Defense System is Activated in Saliva

As the scientists first demonstrated by combining salivary flow measurements, proteome analyses and bioinformatic evaluations, all the substances under investigation modulate the protein composition of saliva to a greater or lesser extent.

Analyses of the biological function of the salivary proteins affected by modulation also showed that the changes triggered by citric acid and 6-gingerol activate the molecular defense system in saliva.

For example, 6-gingerol increased the activity of an enzyme that converts the thiocyanate contained in saliva into hypothiocyanite, approximately tripling the amount of the antimicrobial and fungicidal hypothiocyanite in saliva. The changes triggered by citric acid, on the other hand, caused lysozyme levels in saliva to increase tenfold.

Studies on bacterial cultures have shown for the first time that this increase is sufficient to almost completely prevent the growth of Gram-positive bacteria. Lysozyme acts against this type of bacteria by destroying their cell walls.

“Our new findings show that flavoring substances already display biological effects in the oral cavity that go far beyond their known sensory properties,” said Professor Hofmann from the Department of Food Chemistry and Molecular Sensory Science at TUM. The food chemist explains that one of the goals of food systems biology is to further investigate these using the latest analytical methods. In his opinion, this is the only way to find new approaches for the long-term production of food whose ingredient and function profiles are aligned with the health and sensory needs of consumers.

Facts, background information, dossiers
  • saliva
  • citric acid
  • gingerols
  • 6-gingerol
  • thiocyanates
  • ginger
  • aspartame
  • food
  • hypothiocyanates
  • lysozymes
  • monosodium glutamate
  • hydroxy-alpha-sanshool
  • hydroxy-beta-sanshool
  • food chemistry
More about TU München
  • News

    Food activates brown fat

    Brown fat consumes energy, which is the reason why it could be important for preventing obesity and diabetes. Working together with an international team, researchers at the Technical University of Munich (TUM) were able to demonstrate that food also increases the thermogenesis of brown fat ... more

    Alzheimer's disease and diabetes: Hope for inhibitors

    Effective therapeutics to counteract the formation of amyloid plaques in Alzheimer's disease and type 2 diabetes are not yet available. Scientists at the Technical University of Munich (TUM) have now come a little bit closer to a solution:  They have described a new class of designed macroc ... more

    Pungent tasting substance in ginger reduces bad breath

    The pungent compound 6-gingerol, a constituent of ginger, stimulates an enzyme contained in saliva – an enzyme which breaks down foul-smelling substances.  It thus ensures fresh breath and a better aftertaste. Citric acid, on the other hand, increases the sodium ion content of saliva, makin ... more

  • Universities

    Technische Universität München

    Since its inception in 1868, TUM has established its reputation as a foremost academic institution with 6 Nobel prizes and many other prestigious awards, making it repeatedly the number one German university in various rankings, including the most recent ones. Our university covers a large ... more

    Technische Universität München im Wissenschaftszentrum Straubing

    more

Your browser is not current. Microsoft Internet Explorer 6.0 does not support some functions on Chemie.DE