Meine Merkliste
my.bionity.com  
Login  

Molekulare Kraftmesser

21.09.2017

© MPI für Biochemie

Die Entwicklung neuer Fluoreszenz-basierter Biosensoren, welcher unter mechanischer Kraft entfalten, erlaubt die Vermessung molekularer Kräfte entlang spezifischer Strukturen in lebenden Zellen.

Proteine werden häufig als molekulare Maschinen der Zellen beschrieben. Um ihre Funktionsweise zu verstehen, reicht es häufig nicht aus, sich die beteiligten Proteine unter dem Mikroskop anzuschauen. Dort, wo Maschinen arbeiten treten mechanische Kräfte auf, die wiederum Einfluss auf die jeweiligen biologische Prozesse nehmen. Diese extrem kleinen Kräfte können dank molekulare Kraftsensoren in den Zellen gemessen werden. Jetzt haben Forscher am Max-Planck-Institut für Biochemie molekulare Sensoren entwickelt, die intrazellulär auftretende Kräfte mehrerer Proteine in höchster Auflösung im Pikonewton-Bereich messen können.

Sobald Proteine aneinander ziehen, wirken Kräfte im Pikonewtonbereich. Zellen können solche mechanischen Informationen detektieren und je nach Art des Signals unterschiedlich reagieren. Haftproteine an der Oberfläche von Zellen erkennen zum Beispiel, wie starr ihre Umgebung ist und passen die Proteinzusammensetzung der Zelle an. Um diese minimal wirkenden Kräfte messen zu können, entwickelt die Arbeitsgruppe „Molekulare Mechanotransduktion“ am Max-Planck-Institut molekulare Sensoren. „Diese kleinen Messgeräte funktieren ähnlich wie eine Federwaage“, so Carsten Grashoff, Leiter der Forschungsgruppe.

Der neu entwickelte Sensor besteht aus zwei fluoreszenten Molekülen, die mit einer Art molekularer Feder verbunden sind. Wirkt auf das Molekül eine Kraft von nur wenigen Pikonewton wird die Feder gespannt, was mit einem speziellen Mikroskopieverfahren ausgelesen werden kann. „Wir sind jetzt in der Lage, die Mechanik mehrerer Moleküle gleichzeitig zu vermessen“, erklärt Carsten Grashoff. Verglichen mit früheren Sensoren können die Wissenschaftler jetzt sagen, welche Proteine unter Kraft stehen und wie viele.

„Beim Tauziehen ziehen vielen Menschen unterschiedlich stark an einem Seil. Einige ruhen sich vielleicht aus und lassen den Vordermann die Arbeit machen. Bei den Proteinen ist das ganz ähnlich. Wir können jetzt ermitteln, welche Proteine zur zellulären Kraftentwicklung beitragen und welcher Prozentsatz dieser Moleküle eigentlich mitmacht“ , erklärt Grashoff. Der zu messende Kraftbereich ist jetzt auch enger eingrenzbar, das Verfahren erlaubt präzise Messungen in einem Bereich von drei bis fünf Pikonewton. „Wie bei Entwickung von neuen Mikroskopen versuchen auch wir immer bessere Auflösungen zu erreichen, was uns hier gelungen ist“, so Grashoff weiter.

Aufgrund der universellen Wechselwirkung von Kräften in Zellen könnte der neue Sensor in vielen Bereichen von Bedeutung sein. „Zentrale Fragestellungen ergeben sich in der Krebsforschung, denn hier ist schon länger bekannt, dass Tumorzellen in starren Geweben Vorteile haben. Auch für das Verständnis von Muskel- oder Hauterkrankungen könnten die Sensoren neue Einblicke in die Krankheitsmechanismen geben“, schaut Grashoff in die Zukunft.

Originalveröffentlichung:

P. Ringer, A. Weiβl, A.-L. Cost, A. Freikamp, B. Sabass, A. Mehlich, M. Tramier, M. Rief and C. Grashoff; “Multiplexing molecular tension sensors reveals piconewton force gradient across talin-1”; Nature Methods; September 2017

Fakten, Hintergründe, Dossiers
Mehr über MPI für Biochemie
  • News

    Der „TRiC” bei der Aktinfaltung

    Damit Proteine ihre Aufgaben in Zellen wahrnehmen können, müssen sie richtig gefaltet sein. Molekulare Assistenten, sogenannte Chaperone, unterstützen Proteine dabei, sich in ihre funktionsfähige, dreidimensionale Struktur zu falten. Während die meisten Proteine sich bis zu einem bestimmten ... mehr

    Aus-Schalter für Nebenwirkungen

    Opioide sind starke Schmerzmittel, die eine Reihe schädlicher Nebenwirkungen haben und zu Abhängigkeit führen können. Forscher aus Deutschland, Österreich und den USA haben jetzt ein Verfahren entwickelt, das tiefere Einblicke in die Reaktion des Gehirns auf Opioide erlaubt. Die Forscher an ... mehr

    Neue Methode zur genauen Proteinbestimmung

    Auf dem Weg zur personalisierten Medizin zeigt sich, dass die Analyse von Proteinen einen immer höheren Stellenwert einnimmt. Die Messmethodik der Wahl ist hierfür die Massenspektrometrie. Wissenschaftler am Max-Planck-Institut für Biochemie haben die neue Markierungsmethode EASI-tag für Pr ... mehr

Mehr über Max-Planck-Gesellschaft
  • News

    Stress beeinflusst Regulation des Blutflusses im Gehirn

    Verschiedene Studien mit bildgebenden Verfahren deuten auf einen Zusammenhang zwischen chronischem Stress und Veränderungen in den Hirnregionen hin, die Stressreaktionen koordinieren. Während akute Stressreaktionen der Anpassung des Organismus daran dienen, kann chronischer Stress zu psychi ... mehr

    Auf die Größe kommt es an

    Alle Zellen im Körper haben die grundlegende Fähigkeit sich vor Infektionen zu schützen. Wie dieses als angeborene Immunantwort bezeichnete Phänomen genau funktioniert, ist allerdings noch nicht gut verstanden. Kürzlich fanden Wissenschaftler des Max-Planck-Instituts für Biologie des Altern ... mehr

    Braune Fettzellen zum Abnehmen

    Starkes Übergewicht führt in den meisten Fällen zu Folgeerkrankungen wie Diabetes, Herz-Kreislauferkrankungen und Krebs. Eine Reduzierung des Übergewichtes ist aus diesem Grund die beste Möglichkeit um weitere Krankheiten zu vermeiden. Wissenschaftler vom Max-Planck-Institut für Stoffwechse ... mehr

  • Videos

    Epigenetics - packaging artists in the cell

    Methyl attachments to histone proteins determine the degree of packing of the DNA molecule. They thereby determine whether a gene can be read or not. In this way, environment can influence the traits of an organism over generations. mehr

    Biomaterials - patent solutions from nature

    Animals and plants can produce amazing materials such as spider webs, wood or bone using only a few raw materials available. How do they achieve this? And what can engineers learn from them? mehr

    Chaperone - Faltungshelfer in der Zelle

    In der Zelle geht es manchmal zu wie beim Brezelbacken: Damit ein Protein richtig funktionieren kann muss seine Aminosäurekette in die richtige Form gebracht werden. Franz-Ulrich Hartl erforscht, wie die sogenannten Chaperone als Faltungshelfer der Proteine wirken. mehr

  • Forschungsinstitute

    Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V.

    Max-Planck-Institute betreiben Grundlagenforschung in den Natur-, Bio-, Geistes- und Sozialwissenschaften im Dienste der Allgemeinheit. Die Max-Planck-Gesellschaft greift insbesondere neue, besonders innovative Forschungsrichtungen auf, die an den Universitäten in Deutschland noch keinen od ... mehr

Ihr Bowser ist nicht aktuell. Microsoft Internet Explorer 6.0 unterstützt einige Funktionen auf Chemie.DE nicht.