Erstmals Herzpflaster aus Stammzellen für Patienten mit Herzmuskelschwäche

Forscher stellen aus Stammzellen schlagende Herzgewebe für eine klinische Prüfung her

21.02.2017 - Deutschland

Die Herzmuskelschwäche betrifft weltweit mehr als 20 Millionen Menschen und ist eine der häufigsten Erkrankungen mit Todesfolge. Bisherige Therapieansätze können den Krankheitsverlauf verlangsamen, das Herz aber nicht reparieren. Die Entwicklung neuer reparativer Therapieverfahren ist von besonderer Bedeutung, da aufgrund des demographischen Wandels die Zahl der Patienten mit Herzmuskelschwäche weiter zunimmt.

umg/zimmermann

Herzpflaster, sogenannte Engineered Heart Muscle (EHM), in zwei unterschiedlichen Darreichungsformen.

Forschern der Universitätsmedizin Göttingen (UMG) am Deutschen Zentrum für Herz-Kreislauf-Forschung (DZHK), Standort Göttingen, ist es nun erstmals gelungen, sogenannte Herzpflaster oder auch „Engineered Heart Muscle“ (EHM) für den Wiederaufbau von verloren gegangenem Herzmuskelgewebe unter für klinische Anwendungen geeigneten Bedingungen herzustellen. Das Forscherteam unter der Leitung von Prof. Dr. Wolfram-Hubertus Zimmermann, Direktor des Instituts für Pharmakologie und Toxikologie der UMG und Sprecher des DZHK-Standorts Göttingen, hat dafür die Herstellungsbedingungen für EHM soweit entwickelt, dass eine Prüfung von EHM in Patienten mit Herzmuskelschwäche im Rahmen kontrollierter klinischer Studien erstmalig machbar scheint. Durch die Anwendung innovativer und individualisierbarer 3D-Druck-Verfahren ist es darüber hinaus gelungen, schlagende Herzpflaster in der für Patienten mit Herzmuskelschwäche nötigen Größe und Form herzustellen. Dabei zeigen die EHM Eigenschaften des erwachsenen Herzens, die bisher nicht im Labor zu erzielen waren. Dazu gehört unter anderem eine Zunahme der Herzkraft bei Steigerung der Herzfrequenz; ein Mechanismus, der in jedem gesunden Menschen nachweisbar ist und bei Herzmuskelschwäche verloren geht. Diese natürlichen Gewebeeigenschaften machen EHM für eine direkte Anwendung als Herzpflaster sowie als Testsystem für die Entwicklung und Prüfung neuer Arzneimitteln, das ohne Tierexperimente auskommt, besonders attraktiv.

„Die von uns entwickelten hoch definierten Kulturbedingungen sind für eine Anwendung in der Arzneimittelentwicklung wie auch für eine Herzreparatur ein aus unserer Sicht entscheidender Durchbruch“, sagt Dr. Malte Tiburcy, Institut für Pharmakologie und Toxikologie der UMG, und Erstautor der Publikation. „Auf Grundlage des von uns entwickelten Verfahrens bereiten wir aktuell die weltweit erste klinische Studie zum Herzmuskelaufbau über Herzpflaster in Patienten mit Herzmuskelschwäche vor“, so Prof. Dr. Wolfram-Hubertus Zimmermann, Senior-Autor der Publikation.

Das Konzept der Herzreparatur basiert auf dem passgenauen Einbau schlagender Herzmuskelgewebe aus dem Labor in das erkrankte Herz. Für die Arzneimittelentwicklung sind die dem Herzen ähnliche stabile Funktion sowie die Möglichkeit der Simulation einer Herzmuskelschwäche mit typischen klinischen Begleiterscheinungen (Kraftverlust, Zelltod, Biomarker Freisetzung) von zentraler Bedeutung. Gerade für die Entwicklung wirksamer und sicherer Arzneimittel sind Testungen am Menschen durch das an der UMG entwickelte Verfahren auch ohne Gefährdung von Probanden und Patienten möglich.

Herzmuskelzellen werden aus menschlichen pluripotenten Stammzellen gewonnen und mit Bindegewebszellen in Kollagen vermischt. Unter definierten Kulturbedingungen in 3D-gedruckten Kulturformen lassen sich so Herzmuskelgewebe mit unterschiedlicher Form und Funktion erzeugen. Die Funktion der von Prof. Zimmermann und seinem Team entwickelten Herzgewebe lässt sich mit bloßem Auge ohne Zuhilfenahme von Mikroskopen nachverfolgen, dabei werden klassische Eigenschaften von menschlichem Herzgewebe sichtbar und messbar. Dies ist für eine Anwendung in der Arzneimittelentwicklung und Herzreparatur von zentraler Bedeutung.

Originalveröffentlichung

Weitere News aus dem Ressort Wissenschaft

Meistgelesene News

Weitere News von unseren anderen Portalen

Kampf gegen Krebs: Neueste Entwicklungen und Fortschritte