Neuen molekularen Angriffspunkt für die Behandlung der Arteriosklerose entdeckt

Wissenschaftler identifizieren Enzym NDPKB als spezifischen Angriffspunkt für eine mögliche Therapie

11.09.2015 - Deutschland

Gefäßverengungen, wie sie beispielsweise beim Krankheitsbild der Arteriosklerose entstehen, sind gekennzeichnet von Zellwucherungen der glatten Gefäßmuskulatur. Auch nach einer Angioplastie, bei der ein verengtes Gefäß (Stenose) mechanisch geweitet wird, führt die Bildung einer so genannten Neointima aus proliferierenden glatten Muskelzellen häufig zu einer erneuten Gefäßverengung (Restenose).

Wissenschaftler der Universitätsmedizin Mannheim erforschen die Prozesse, die diese Wucherungen auslösen. Ziel ist es, solche Prozesse verhindern bzw. gezielter behandeln zu können. Bei ihren Untersuchungen an verletzten Halsschlagadern von Mäusen haben die Forscher das Enzym Nukleosid-Diphosphat-Kinase B (NDPKB) als mögliches molekulares Target für eine entsprechende Therapie identifiziert.

Sie konnten zeigen, dass das Enzym NDPKB in glatten Muskelzellen verletzter Gefäße den Calzium-abhängigen Kaliumkanal SK4 aktiviert, der nur bei pathologischer, also krankhafter Vermehrung in den glatten Gefäßmuskelzellen vorkommt. Die Aktivierung erfolgt durch Phosphorylierung einer spezifischen Aminosäure, des Histidin 358. Die Aktivierung des Kanals kann deshalb durch das Protein Histidin-Phosphatase 1 (PHPT-1) aufgehoben werden.

Diese Beobachtungen sind von klinischer Bedeutung. Bei Gefäßerkrankungen, die mit der Vermehrung von glatten Muskelzellen einhergehen, wie Arteriosklerose und Restenosen, sollte die Hemmung der NDPKB bzw. Aktivierung der Phosphatase PHPT-1 Wirkung zeigen. Es zeichnet sich deshalb hier ein Ansatz für eine gezielte Therapie der Arteriosklerose ab, indem gewebespezifisch auf die Interaktion von NDPKB und SK4-Kanal eingewirkt wird.

Originalveröffentlichung

Weitere News aus dem Ressort Wissenschaft

Meistgelesene News

Weitere News von unseren anderen Portalen

Kampf gegen Krebs: Neueste Entwicklungen und Fortschritte