Stehen statt Liegen: Bochumer und Dortmunder Forscher messen Orientierung des Ras-Proteins

16.10.2012 - Deutschland

Bochumer Biophysiker haben in Kooperation mit dem MPI Dortmund erstmals die Orientierung des membrangebundenen Proteins Ras gemessen. Das RUB-Team kombinierte drei biophysikalische Methoden -  Infrarotspektroskopie, Computersimulationen und Fluoreszenzmessungen - und kam zu dem überraschenden Ergebnis, dass sich zwei Ras-Moleküle miteinander verbinden, um eine aufrechte Position auf der Membran einzunehmen. Bislang ging man aufgrund von Computersimulationen davon aus, dass das Protein einzeln auf der Membran liegt. Ras ist der zentrale Schalter für das Zellwachstum, und eine Fehlfunktion dieses Proteins ist ein wichtiger Faktor bei der Krebsentstehung. "Diese Ergebnisse werfen ein völlig neues Licht auf die Nanocluster-Bildung von Ras an der Membran", sagt Prof. Dr. Klaus Gerwert von der RUB-Fakultät für Biologie und Biotechnologie. Die Studie wurde vom Biophysical Journal als Titelgeschichte ausgewählt.

Orientierung beeinflusst Proteininteraktion

Die Orientierung eines Proteins beeinflusst seine Interaktionsmöglichkeiten mit anderen Proteinen. "Das ist vergleichbar mit der Situation, dass ein Gast einmal mit ausgebreiteten Armen empfangen wird oder aber der Gastgeber bei der Begrüßung auf der Couch liegen bleibt", veranschaulicht Dr. Jörn Güldenhaupt, der die Orientierungsmessungen durchgeführt hat. Nur wenige biophysikalische Methoden erlauben es, die Proteinorientierung zu bestimmen. Die am Lehrstuhl für Biophysik etablierte ATR-FTIR-Spektroskopie ist eine davon.

Ras-Moleküle stützen sich gegenseitig

Die falsche Annahme, dass Ras auf der Membran liegt, basierte auf früheren Computersimulationen. Till Rudack aus dem Bochumer Forscherteam nahm Ras ebenfalls virtuell unter die Lupe. Das Ergebnis: Ein einzelnes stehendes Ras-Molekül kippt sehr schnell um, scheint also auf der Membran zu liegen. "Irgendetwas muss das Ras in unseren Messungen gestützt haben", erzählt Till Rudack. "Und das konnte nur ein weiteres Ras-Molekül sein, das aber in der Simulation nicht vorhanden war." Tatsächlich ergaben weitere Computersimulationen von zwei sich gegenseitig stützenden Ras-Molekülen eine stabile stehende Orientierung  - passend zu den Experimenten.

Fluoreszenz-Resonanz-Energie-Transfer: Ein molekularer Zollstock

Das Forscherteam bestätigte die Ergebnisse mit einem weiteren experimentellen Beweis mittels "FRET" (Fluoreszenz-Resonanz-Energie-Transfer). Das ist aktuell die beste Methode, um Interaktionen zwischen zwei Proteinen nachzuweisen. Hierbei markieren Forscher die Ras-Proteine mit zwei verschiedenen Farbstoffen. Interagieren
die Proteine, sind sie sehr dicht beieinander, so dass Energie von einem Farbstoff zum anderen übertragen wird. Wie mit einem Zollstock lässt sich aus dem Anteil der übertragenen Energie der Abstand zwischen den Proteinen messen. Für die Ras-Ras-Interaktion ermittelten die Biophysiker einen Abstand von 4,6 Nanometern, also Millionstel Millimetern. Das entsprach genau dem Abstand, den sie für ein "Doppel-Ras" mit ihren Computersimulationen vorhergesagt hatten.

In der Gruppe stärker

Frühere Studien hatten bereits ergeben, dass Ras-Moleküle sich oft in kleinen Gruppen sammeln. Diese sogenannten Nanocluster bestehen aus vier bis zehn Ras-Proteinen. Bislang ging man davon aus, dass andere Proteine die Clusterbildung vermitteln müssen. "Wir konnten erstmals zeigen, dass Ras selbst aktiv daran beteiligt ist", so PD Dr. Carsten Kötting. Die Clusterbildung ist für Ras von großem Vorteil. In der Gruppe können die Proteine ein Signal deutlicher, also mit weniger Fehlern, weitergegeben. Das SOS-Protein zum Beispiel überträgt ein Signal immer gleichzeitig auf zwei Ras-Moleküle. Liegt Ras in Doppelform (als Dimer) vor, ist dieser
Schritt viel leichter. Das Verständnis für die räumliche Organisation von Ras ermöglicht neue Ansätze für die Medikamentenentwicklung. "Bislang wurden keine Medikamente gefunden, die direkt an Ras angreifen", so Klaus Gerwert. "Ras gilt als undruggable. Die hier gefundene Ras-Ras-Kontaktfläche könnte ein neuer Ansatzpunkt sein, um doch Ras-Medikamente zu entwickeln."

Originalveröffentlichung

Weitere News aus dem Ressort Wissenschaft

Meistgelesene News

Weitere News von unseren anderen Portalen

Revolutioniert künstliche Intelligenz die Life Sciences?

Verwandte Inhalte finden Sie in den Themenwelten

Themenwelt Spektroskopie

Durch die Untersuchung mit Spektroskopie ermöglicht uns einzigartige Einblicke in die Zusammensetzung und Struktur von Materialien. Von der UV-Vis-Spektroskopie über die Infrarot- und Raman-Spektroskopie bis hin zur Fluoreszenz- und Atomabsorptionsspektroskopie - die Spektroskopie bietet uns ein breites Spektrum an analytischen Techniken, um Substanzen präzise zu charakterisieren. Tauchen Sie ein in die faszinierende Welt der Spektroskopie!

15+ Produkte
10+ White Paper
15+ Broschüren
Themenwelt anzeigen

Themenwelt Spektroskopie

Durch die Untersuchung mit Spektroskopie ermöglicht uns einzigartige Einblicke in die Zusammensetzung und Struktur von Materialien. Von der UV-Vis-Spektroskopie über die Infrarot- und Raman-Spektroskopie bis hin zur Fluoreszenz- und Atomabsorptionsspektroskopie - die Spektroskopie bietet uns ein breites Spektrum an analytischen Techniken, um Substanzen präzise zu charakterisieren. Tauchen Sie ein in die faszinierende Welt der Spektroskopie!

15+ Produkte
10+ White Paper
15+ Broschüren