Meine Merkliste
my.bionity.com  
Login  

Immunsystem



Als Immunsystem (vom lateinischen immunis eigentlich „steuerfrei“, im übertragenen Sinne unberührt, frei, rein) wird das biologische Abwehrsystem höherer Lebewesen bezeichnet, das Gewebeschädigungen durch Krankheitserreger verhindert. Es entfernt in den Körper eingedrungene Mikroorganismen, fremde Substanzen und ist außerdem in der Lage, fehlerhaft gewordene körpereigene Zellen zu zerstören. Das Immunsystem ist ein komplexes Netzwerk aus verschiedenen Organen, Zelltypen und Molekülen.

Das Immunsystem hat eine große Bedeutung für die körperliche Unversehrtheit von Lebewesen, denn praktisch alle Organismen sind ständig den Einflüssen der belebten Umwelt ausgesetzt; manche dieser Einflüsse stellen eine Bedrohung dar: Wenn schädliche Mikroorganismen in den Körper eindringen, kann dies zu Funktionsstörungen und Krankheiten führen. Typische Krankheitserreger sind: Bakterien, Viren und Pilze, sowie einzellige (z. B. Protozoen wie Plasmodien) beziehungsweise mehrzellige Parasiten (z. B. Bandwürmer).

Auch Veränderungen im Inneren des Körpers können die Existenz eines Lebewesens bedrohen: Wenn normale Körperzellen im Laufe der Zeit ihre gesunde Funktion verlieren, so sterben sie meist ab (Apoptose) und müssen abgebaut werden. In seltenen Fällen können sie auch krankhaft entarten und zur Entstehung von Krebs führen.

Alle Lebewesen – ob Tier, Pflanze oder Mensch – verfügen daher über Schutzfunktionen. Schon einfache Organismen besitzen einen solchen Abwehrmechanismus, die so genannte angeborene Immunabwehr; sie entstand bereits sehr früh in der Stammesgeschichte der Lebewesen und wurde seitdem weitgehend unverändert beibehalten. Die Wirbeltiere entwickelten zusätzlich eine komplexe, anpassungsfähige, so genannte adaptive Immunabwehr, die sie noch effektiver vor Krankheitserregern schützt.

Die pflanzliche Abwehr von Pathogenen basiert auf völlig andersartigen Mechanismen.

Inhaltsverzeichnis

Einteilung

Die Immunabwehr lässt sich nach der Funktionsweise und ihrem Erwerb grundlegend unterteilen.

Angeborene oder unspezifische Abwehr

Schon sehr früh in der Stammesgeschichte der Lebewesen entwickelte sich die unspezifische oder angeborene Immunabwehr (engl. „innate immunity“). Dazu zählen anatomische und physiologische Barrieren wie Epithelien, aber auch zellvermittelte Gegenwehr durch Phagozytose, sowie allgemein entzündliche Reaktionen und das Komplementsystem. Die obersten Hautschichten sind für fremde Keime normalerweise nicht einfach zu durchdringen und der dort herrschende pH-Wert macht es ihnen schwer, in den Körper zu gelangen. Schafft es ein Mikroorganismus die Epithelbarriere zu überwinden, wird er sogleich von verschiedenen Molekülen, sowie von speziellen Zellen, den Makrophagen, Natürlichen Killerzellen und Neutrophilen Zellen attackiert, die ihn durch Keimbahn-codierte Rezeptoren erkennen und von körpereigenen Zellen unterscheiden können. Somit kann die angeborene Immunabwehr Krankheitserreger (Pathogene) bekämpfen, ohne dass der Organismus vorher mit dem Erreger selbst Kontakt gehabt haben muss. Dabei werden Strategien verwendet, die sich schon zur Zeit der ersten Eukaryoten als effizient erwiesen haben.

Zu diesen speziellen Rezeptoren des angeborenen Immunsystems gehören beispielsweise die so genannten „toll-ähnlichen Rezeptoren“, engl. Toll-like Receptor (TLR), die krankmachende Mikroorganismen erkennen[1]. Dabei erkennen die TLRs nur Pathogene, die sich außerhalb der Zelle oder in den Endosomen befinden. Ein wichtige Rolle spielen deshalb auch zytosolisch lokalisierte Rezeptoren, z. B. RIG-I (retinoic acid inducible gene I), die sich vermehrende Viren direkt an den Eigenheiten ihrer Ribonukleinsäuren erkennen können. Das Immunsystem nutzt dabei unveränderliche Merkmale der Pathogene, die so genannten Pathogen-assoziierten molekularen Muster (engl. „pathogen-associated molecular patterns“, PAMP). Diese sind so eng mit dem Überleben und/oder den krankmachenden Eigenschaften des Erregers verbunden, dass dieser sie nicht einfach ändern kann, um etwa der Immunreaktion zu entgehen. Bezüglich der TLRs führt der Begriff "unspezifische" Immunabwehr leider zu Missverständnissen, da die Erkennung der PAMPs sehr spezifisch funktioniert. Es wurde bezüglich der TLRs daher auch der Begriff "bow-tie-architecture" eingeführt: eine begrenzte Anzahl Rezeptoren erkennt über einige spezifische Hauptmotive eine Vielzahl mikrobieller Strukturen.

Makrophagen und neutrophile Granulozyten enthalten des Inflammasom, einen Proteinkomplex, der durch Bestandteile von Bakterien oder durch Harnsäurekristalle stimuliert wird. Dadurch wird eine Serie von Reaktionen angestoßen, die letztendlich zur Aktivierung des proinflammatorischen Zytokins Interleukin-1β führen. Dieses wird von den Makrophagen sezerniert und löst die Entzündungsreaktion aus. Wurde das Inflammasom durch Bakterienbestandteile aktiviert, spielt die Entzündungsreaktion eine wichtige Rolle bei der Abwehr der Infektion. Wurde die Entzündung dagegen durch Harnsäure-Kristalle ausgelöst, kommt es zum Gichtanfall[2][3].

Die angeborene Immunabwehr ist daneben auch in der Lage, körpereigene Zellen von fremden Strukturen zu unterscheiden. Hierfür verfügt praktisch jede Zelle im Körper über den so genannten Haupthistokompatibilitätskomplex (MHC), der quasi den „Mitgliedsausweis“ der Zelle darstellt. Körperfremde oder erkrankte Zellen, die nicht über den MHC verfügen, werden so zwangsläufig erkannt und unweigerlich das Ziel einer Abwehrreaktion.

Es wird angenommen, dass circa 90 Prozent aller Infektionen durch die angeborene Immunabwehr erkannt und erfolgreich bekämpft werden können. Im Laufe der stammesgeschichtlichen (phylogenetischen) Entwicklung von einfachen Lebewesen bis hin zu komplexen Organismen wurden diese Abwehrstrategien daher fast unverändert übernommen. So ergibt zum Beispiel ein Vergleich der Immunabwehr von Insekten mit dem angeborenen Teil der menschlichen Immunabwehr vielerlei Gemeinsamkeiten[4].
Die Aufgaben der angeborenen Immunabwehr werden von verschieden Zellen wahrgenommen - dazu gehören neben den oben genannten Zelltypen auch eosinophile Granulozyten, dendritische Zellen und Epithelzellen. Diese Zellen sind zum Teil in der Lage, den Angreifer (Erreger) selbst zu vernichten. Außerdem versetzen sie den Organismus durch Produktion von Botenstoffen (Interleukine) in eine Art Alarmzustand und können so die Immunreaktion noch verstärken. Die Wirkung einiger dieser Botenstoffe äußert sich erkennbar beispielsweise in Entzündung und Fieber.

Adaptive oder spezifische Abwehr

Die spezifische oder adaptive Immunabwehr, früher auch „erworbenes Immunsystem“ genannt, entwickelte sich im Laufe der Phylogenese der Wirbeltiere aus der angeborenen Immunabwehr. Sie zeichnet sich durch die Anpassungsfähigkeit gegenüber neuen oder veränderten Krankheitserregern aus. Im Rahmen dieser Anpassung sind die Zellen der adaptiven Immunabwehr in der Lage, spezifische Strukturen (Antigene) der Angreifer zu erkennen und gezielt zelluläre Abwehrmechanismen und molekulare Antikörper zu bilden. Neben Antigenpräsentierenden Zellen (APC) wie Dendritischen Zellen, stellen zwei Gruppen von Zellen die wesentlichen Elemente der adaptiven Immunität dar. Die T-Lymphozyten, welche zum einen die zellvermittelte Immunantwort gewährleisten und zum anderen die B-Lymphozyten unterstützen, sowie die B-Lymphozyten selbst, die für die humorale Immunität verantwortlich sind, also für jene Abwehrmaßnahmen, die sich gegen Eindringlinge in den Körperflüssigkeiten (Humores) richten. Nach der Infektion bleiben spezifische Antikörper und Gedächtniszellen erhalten, um bei erneutem Kontakt mit dem Krankheitserreger binnen kurzer Zeit eine angemessene Abwehrreaktion zu ermöglichen.

Das adaptive Immunsystem ersetzt aber nicht das angeborene, sondern arbeitet mit diesem zusammen. Die verschiedenen Bestandteile des Immunsystems bedingen sich gegenseitig - erst durch ein gut koordiniertes Zusammenspiel der angeborenen und adaptiven Immunabwehr wird die komplexe Immunreaktion des Körpers ermöglicht[5].

Bestandteile des Immunsystems

Die Bestandteile des Immunsystems sind

  • mechanische Barrieren, die ein Eindringen der Schädlinge verhindern sollen
  • Zellen, wie zum Beispiel Granulozyten, natürliche Killerzellen (NK-Zellen) oder T-Lymphozyten
  • Eiweiße, die als Botenstoffe oder zur Abwehr von Krankheitserregern dienen
  • psychische Immunfaktoren.

Mechanische und physiologische Barrieren

Die mechanischen und physiologischen Barrieren des Körpers sind die erste Verteidigungslinie gegen Krankheitserreger. Sie sorgen dafür, dass die Pathogene erst gar nicht in den Körper eindringen können oder ihn möglichst schnell wieder verlassen:

  • Haut – äußere Schicht als Barriere, Hauttalg, Schweiß und Normalflora als Wachstumsbremsen für körperfremde Mikroorganismen
  • Schleimhaut – Bindefunktion des Schleims
  • Augen – Abtransportfunktion der Tränen, antimikrobielles Enzym Lysozym bekämpft Mikroorganismen
  • Atemwege – Bindefunktion des Schleims, Abtransportfunktion der Flimmerhärchen
  • Mundhöhle – antimikrobielles Enzym Lysozym im Speichel bekämpft Mikroorganismen
  • MagenMagensäure (die Salzsäure enthält) und Eiweiß abbauende Enzyme zerstören fast alle Bakterien und Mikroorganismen
  • Darm – Infektabwehr durch anwesende Bakterien (Darmflora), Abtransportfunktion durch ständige Entleerung und das so genannte darmassoziierte Immunsystem (GALT = Gut Associated Lymphoid Tissue)
  • Harntrakt – Abtransportfunktion durch ständige Harnausspülung sowie osmotische Effekte der hohen Harnstoffkonzentration
  • Schweiß- und Talgdrüsen

Zelluläre Bestandteile

 

Die Zellen des Immunsystems zirkulieren in den Blutgefäßen und Lymphbahnen und kommen in den Geweben des Körpers vor. Dringt ein Krankheitserreger in den Körper ein, so können die Abwehrzellen ihn bekämpfen. Neutrophile Granulozyten, Monozyten/Makrophagen und dendritische Zellen können beispielsweise durch Aufnahme und Verdauung (Phagozytose) den Erreger selbst vernichten oder durch die Produktion von Immunmodulatoren und Zytokinen die Immunreaktion des Organismus steuern und andere Abwehrzellen zum Ort der Entzündung locken.

Granulozyten

Siehe auch den Hauptartikel Granulozyten.

Granulozyten (von lat. Granulum: Körnchen) machen den Großteil der weißen Blutkörperchen (Leukozyten) aus. Sie können die Blutbahn verlassen und ins Gewebe einwandern. Granulozyten haben in ihrem Zytoplasma zahlreiche Bläschen (Vesikel oder Granula genannt), die aggressive Stoffe enthalten, mit denen Krankheitserreger unschädlich gemacht werden können. Andere Stoffe (beispielsweise Histamin) spielen bei der Entzündungsreaktion und bei Allergien eine Rolle. Die unterschiedlichen Gruppen von Granulozyten werden nach ihrer Färbereaktion in der Methylenblau-Eosin-Färbung (Giemsa-Färbung) eingeteilt.

Die Neutrophilen Granulozyten machen 40 bis 50 Prozent der zirkulierenden Leukozyten aus. Aktiviert durch Zytokine, die vom Ort der Infektion ausgesondert werden, wandern sie aus den Blutgefäßen in das betroffene Gewebe ein. Die Granula der Neutrophilen enthalten unter anderem saure Hydrolasen, Defensine (30 % des Inhalts), Myeloperoxidase und Proteasen, wie Elastase, Kollagenase, Neuramidase und Cathepsin G. Dieser „Cocktail“ ermöglicht es den Neutrophilen, sich einen Weg durch das Gewebe zu bahnen und zu den Bakterien vorzudringen. Dort sind sie in der Lage, Krankheitserreger (beispielsweise Bakterien) unter anderem durch Phagozytose zu vernichten.

Eosinophile Granulozyten machen etwa 3–5 Prozent der Zellen im Differentialblutbild aus. Ihren Namen beziehen sie vom Farbstoff Eosin, mit dem sie angefärbt werden können. Auch Eosinophile sind zur Chemotaxis befähigt, d. h. sie können sich in Richtung eines Entzündungsortes fortbewegen. Eosinophile enthalten in ihren Granula basische Proteine, zum Beispiel das Major Basic Protein, die sie nach Stimulation durch Antikörper der IgE-Klasse freisetzen. Eosinophile spielen eine wichtige Rolle bei der Parasitenabwehr; bei einem Befall mit Parasiten kommt es daher zu einer starken Vermehrung der Eosinophilen im Blut. Auch bei Allergien ist die Anzahl der Eosinophile im Blut erhöht, was darauf hinweist, dass die Eosinophilen auch bei dieser Erkrankung eine - wenig zuträgliche - Rolle spielen.

Basophile Granulozyten besitzen zahlreiche grobe unregelmäßige Granula, die unter anderem Histamin und Heparin enthalten. Im Differentialblutbild machen sie nur einen geringen Anteil aus (< 2  Prozent). Wenn ihre Rezeptoren durch an IgE gebundene Allergene stimuliert werden, schütten Basophile toxische Mediatoren, wie Histamin und Plättchenaktivierenden Faktor (PAF) aus. Über die physiologische Bedeutung der Basophilen besteht aber weitgehend Unklarheit.

Makrophagen

Siehe auch den Hauptartikel Makrophagen.

 

Makrophagen (Riesenfresszellen) stellen ebenfalls einen Teil der Patrouille des Immunsystems dar. Makrophagen reifen aus Monozyten (einkernige weiße Blutkörperchen = mononukleäre Leukozyten) heran, die die Blutbahn verlassen. Makrophagen halten sich im Gewebe auf, dort erkennen und fressen (phagozytieren) sie eingedrungene Erreger. Können die Erreger nicht durch die Makrophagen allein bekämpft werden, so können Makrophagen die adaptive Immunabwehr aktivieren. Dazu werden die aufgenommenen Teile der Erreger im Inneren der Makrophagen in einzelne Peptide (Epitope) zerlegt und durch MHC-II-Moleküle auf der Oberfläche präsentiert. Der Makrophage wird also zu einer Antigen-präsentierenden Zelle. Die Antigene können erst dadurch von T-Helferzellen erkannt werden, die daraufhin eine adaptive Immunantwort initiieren, die letztendlich zur Vernichtung des Erregers führt. Makrophagen spielen außerdem bei der Bekämpfung und Beseitigung von schädlichen Substanzen und Abfallprodukten (beispielsweise Teer aus Zigarettenrauch in der Lunge) eine entscheidende Rolle, weshalb sie gelegentlich auch als „Müllabfuhr des Körpers“ bezeichnet werden.

Natürliche Killerzellen

Die 1975 entdeckten Natürlichen Killerzellen (NK-Zellen) sind Teil der angeborenen Immunabwehr[6]. Obwohl NK-Zellen keine antigenspezifischen Rezeptoren auf ihrer Oberfläche tragen, werden sie zu den Lymphozyten gezählt, da sie eine gemeinsame Vorläuferzelle im Knochenmark haben.
NK-Zellen sind eine der ersten Verteidigungslinien im Kampf gegen Infektionen und Krebs, weil sie infizierte Zellen vernichten können, ohne vorher mit dem Krankheitserreger selbst in Kontakt gewesen zu sein. Sie verwenden dazu einen Mechanismus, der in den 1980er Jahren von dem schwedischen Immunologen Klas Kärre entdeckt wurde und als "Fehlendes Selbst" (engl. „missing self“) bezeichnet wird[7]: NK-Zellen erkennen unter anderem den MHC-I-Komplex, der auf nahezu allen gesunden Körperzellen vorkommt. Wird eine Zelle durch Viren infiziert oder wandelt sie sich in eine Tumorzelle um, so geht unter Umständen der MHC-I-Komplex auf der Oberfläche verloren. Das fein ausbalancierte Gleichgewicht von inhibierenden und aktivierenden Rezeptorsignalen wird dadurch zugunsten der NK-Zell-Aktivierung verschoben und die erkrankte Zelle fällt einer durch NK-Zellen ausgelösten Immunreaktion anheim.

T-Lymphozyten

Siehe auch den Hauptartikel T-Lymphozyten.

   

T-Lymphozyten, auch T-Zellen genannt, entstehen im Knochenmark aus den Lymphoblasten und wandern in den Thymus, wo sie ausreifen (daher das T, von Thymus-abhängig). T-Zellen tragen an ihrer Oberfläche einen T-Zell-Rezeptor (TCR), mit dem jede T-Zelle jeweils ein spezifisches Antigen erkennen kann (Schlüssel-Schloss-Prinzip). Im Gegensatz zu den B-Lymphozyten, die auch freie Antigene erkennen, erkennen T-Zellen nur Antigene, die im Komplex mit MHC-Molekülen auf den Oberflächen von körpereigenen Zellen präsentiert werden. Die unterschiedlichen Typen von T-Zellen werden eingeteilt nach den Proteinen auf ihrer Zellmembran, die gleichzeitig für die Funktionen der Zellen wichtig sind: T-Helferzellen tragen beispielsweise das CD4-Protein (Die Abkürzung CD steht für engl. Cluster of differentiation), die zytotoxischen T-Zellen haben das CD8-Protein auf ihrer Oberfläche.

T-Helferzellen: Die T-Helferzellen koordinieren die Immunreaktion. Sie erkennen über ihren spezifischen T-Zell-Rezeptor Antigene, die ihnen von den antigenpräsentierenden Zellen (dendritische Zellen, Makrophagen, B-Lymphozyten) auf MHC-II-Komplexen dargeboten werden. Diese Aktivierung veranlasst die T-Helferzelle sich zu teilen und ihre Botenstoffe freizusetzen: die Lymphokine der Zellen vom Subtyp TH1 führen dabei eher zur Verstärkung der zellulären Immunantwort, während TH2-Zellen mehr die Produktion von Antikörpern stimulieren.

Regulatorische T-Zellen: Die Mitte der 1990er erstmals beschriebenen regulatorischen T-Zellen tragen neben dem CD4-Rezeptor noch andere Proteine an ihrer Oberfläche (CD25, FoxP3)[8]. Ihre Aufgabe ist die Modulation der Immunreaktion. Des Weiteren sind regulatorische T-Zellen vermutlich für die Unterdrückung einer überschießenden Immunantwort auf ansonsten 'harmlose' Antigene und Toleranzentwicklung gegen körpereigene Strukturen zuständig.

Zytotoxische T-Zellen: Die zytotoxischen T-Zellen können Antigene erkennen, die ihnen mithilfe der MHC-I-Komplexe präsentiert werden - körpereigene Zellen, die durch Krankheitserreger (zum Beispiel Viren) befallen sind, melden so ihren Zustand an das Immunsystem. Die zytotoxischen T-Zellen heften sich dann mit ihren T-Zell-Rezeptoren an diese Körperzellen; bei diesem Vorgang spielt ihr CD8-Rezeptor eine entscheidende Rolle[9]. Wenn sich noch weitere Rezeptoren, zum Beispiel der CD28-Rezeptor der zytotoxischen T-Zellen, an das fremde Eiweiß geheftet haben, beginnen sich die T-Zellen schnell zu vermehren, und schütten Substanzen aus, welche die infizierte oder krankhaft veränderte Zelle absterben lassen (sog. Apoptose, programmierter Zelltod)[10].

B-Lymphozyten

siehe auch den Hauptartikel B-Lymphozyten.

 

B-Lymphozyten, oder kurz B-Zellen, gehören ebenfalls zu den Leukozyten (weiße Blutkörperchen). Die Bezeichnung „B-Zellen“ stammte ursprünglich von ihrem Bildungsort in der Bursa Fabricii bei Vögeln. Bei Säugetieren entstehen die B-Zellen, wie alle anderen Abwehrzellen auch, im Knochenmark, daher erhielt der Buchstabe B hier nachträglich die Bedeutung bone marrow (engl. für Knochenmark). Bindet eine B-Zelle an den Stoff (Antigen), der zu ihrem Rezeptor passt, kann sie durch Lymphokine aktiviert werden, die von aktivierten T-Helferzellen ausgeschüttet werden. Die derart aktivierten B-Zellen können sich daraufhin zu Antikörper-produzierenden Plasmazellen oder zu Gedächtniszellen entwickeln.

B-Zellen sind im Gegensatz zu T-Zellen in der Lage, auch freie Antigene zu erkennen und sie einer Immunreaktion zuzuführen.

Humorale Bestandteile

Die humoralen Bestandteile des Immunsystems (von lat. humor=Flüssigkeit) bezeichnen verschiedene Plasmaproteine, die passiv im Blut, bzw. der Lymph- und Gewebsflüssigkeit zirkulieren. Sie sind im Gegensatz zu den Abwehrzellen nicht in der Lage, aktiv an den Ort einer Infektion zu wandern.

Antikörper

Siehe auch den Hauptartikel Antikörper.

 

Zur Abwehr von in den Organismus eingedrungenen Bakterien, Bakterientoxinen, Viren oder anderen Fremdstoffen produzieren die B-Lymphozyten und Plasmazellen maßgeschneiderte Antikörper, die bestimmte Proteine oder auch Zuckerketten (Antigene) an der Oberfläche der Fremdstoffe erkennen und sich an diese heften können. Antikörper haben prinzipiell drei Funktionen:

  • 1. Die so genannte Opsonierung. Das heißt, dass das Antigen durch den Fc-Teil (Teil der konstanten Kette des Antikörpers) für Phagozyten (Fresszellen) besser "sichtbar" gemacht wird.
  • 2. Durch den Antigen-Antikörperkomplex wird das so genannte Komplementsystem aktiviert, das zum einen wiederum als Opsonin (=Stoffe die Opsonieren) wirkt, zum anderen Chemotaxine (Lockstoffe für Zellen des Immunsystems) freisetzt und einen sogenannten MAK (Membran-Angriffs-Komplex) bildet, der Löcher in Zellmembranen verursacht.
  • 3. Antikörper wirken direkt inaktivierend auf den Eindringling durch Verkleben und Bildung von großen Komplexen (je nach Antikörperklasse und Anzahl der Antigendeterminanten).

Die einfachsten Antikörper, die der so genannten IgG-Klasse, besteht aus zwei identischen schweren Ketten und zwei identischen leichten Ketten. Die schweren Ketten sind unter anderem für die Verankerung des Antikörpers auf der Oberfläche von Granulozyten zuständig; die leichten Ketten bilden zusammen mit den schweren Ketten die für die Erkennung eines spezifischen Antigens verantwortliche Antigendeterminante im Fab-Fragment. Durch somatische Rekombination, somatische Hypermutation und Kombination verschiedener leichter und schwerer Ketten können Antikörper mehr als 100 Millionen verschiedene Fab-Fragmente bilden und damit eine Unzahl verschiedener Antigene erkennen.

Komplementsystem

Siehe auch den Hauptartikel Komplementsystem.

Das Komplementsystem ist Teil der angeborenen Immunantwort, es besteht aus einer Gruppe von über 30 Plasmaproteinen mit ganz unterschiedlichen Eigenschaften. Ein Teil der zum Komplementsystem gehörenden Proteine sind zum Beispiel Proteasen, die sich an Mikroorganismen binden können und die Zellwände des Eindringlings schädigen, wodurch der Eindringling zerstört wird. Andere Proteine des Komplementsystems, die Anaphylatoxine, haben gefäßerweiternde Wirkung und fördern die Entzündungsreaktion. Viele Komplementfaktoren können außerdem Abwehrzellen zum Ort der Infektion locken und sind in der Lage, Fresszellen zu aktivieren, die die Eindringlinge dann verschlingen.

Interleukine

Siehe auch den Hauptartikel Interleukine.

Die zu den Zytokinen gehörenden Interleukine sind körpereigene Botenstoffe, die von den Zellen des Immunsystems gebildet werden. Man kennt heutzutage bereits eine große Zahl von Interleukinen (IL-1 bis IL-32; Stand Oktober 2005), die jeweils auf ganz unterschiedliche Abwehrzellen wirken – manche regen beispielsweise Leukozyten zu Wachstum, Reifung und Teilung an oder sorgen für deren Aktivierung.

Ablauf einer Immunreaktion

Siehe auch den Hauptartikel Immunreaktion.

Falls Erreger die mechanischen Barrieren überwinden, mit denen sich der Körper vor einer Infektion schützt, so hängt der Ablauf der Immunreaktion davon ab, ob das Immunsystem bereits zuvor einmal einen Kontakt mit diesem bestimmten Erreger hatte.

Bei einer Erstinfektion beginnt die Immunreaktion meist mit den antigenpräsentierenden Zellen, hierzu gehören z. B. Makrophagen oder dendritische Zellen; diese Zellen sind als Teil der angeborenen Immunabwehr in der Lage, typische Merkmale von Krankheitserregern zu erkennen, ohne zuvor mit diesem Erreger Kontakt gehabt zu haben. Sie können die Krankheitserreger aufnehmen (phagozytieren) und in ihrem Inneren einschließen – förmlich „fressen“, daher werden sie auch als Fresszellen bezeichnet. Anschließend präsentieren sie Bruchstücke der Erreger an ihrer Oberfläche den Zellen der adaptiven Immunabwehr (B- und T-Lymphozyten), die daraufhin in einen aktivierten Zustand übergehen. Einige Abwehrzellen können daraufhin die Erreger durch Phagozytose oder die Ausschüttung aggressiver Substanzen direkt abtöten, andere beginnen mit der Produktion von Antikörpern, die an die Erreger binden und diese einerseits bewegungsunfähig und damit unschädlich machen, andererseits sie für die Vernichtung durch weitere Abwehrzellen markieren. Nach der ersten Infektion mit einem Erreger bleiben die Antikörper und so genannte Gedächtniszellen erhalten, um bei einer erneuten Infektion wesentlich schneller und effizienter auf den Eindringling reagieren zu können.

Ob nach einer Infektion tatsächlich auch eine Erkrankung auftritt, hängt von einem komplexen Wechselspiel des Immunsystems mit dem (ungebetenen) Gast ab. Eine Rolle spielen etwa die Menge der eingebrachten Erreger und deren krankmachenden Eigenschaften (Virulenz), sowie der Zustand des Immunsystems der betroffenen Person. So kann durch vorherigen Kontakt mit diesem Erreger bereits eine Immunität bestehen, die Erregerdosis oder -virulenz für einen Krankheitsausbruch zu gering sein oder das Immunsystem in der Lage sein, trotz Infektion Krankheitssymptome zu verhindern [inapparente Infektion oder stille Feiung (Immunisierung ohne Impfung oder Erkrankung)]. Bei intaktem Immunsystem und geringer Erregerdosis kann also eine Erkrankung wie beispielsweise eine Erkältung entweder überhaupt nicht ausbrechen oder einen weniger schweren Verlauf nehmen. Solange sich keine eindeutigen Symptome zeigen, kann der Verlauf einer Infektion kaum oder gar nicht vorhergesagt werden.

Reifung und Alterung des Immunsystems

Das Immunsystem ist im Mutterleib und kurz nach der Geburt noch nicht in der Lage, effektiv Krankheitserreger zu bekämpfen. Der Fötus und Säugling ist daher auf die Schutzfunktion durch mütterliche Antikörper angewiesen (sog. Nestschutz), die er über die Plazenta, bzw. die Muttermilch aufnimmt. Bei vielen Säugetieren können Antikörper die Plazenta gar nicht passieren, die Aufnahme erfolgt dann über das Antikörper-reiche Kolostrum. Da die transplacentalen Antikörper im Blut des Babys mit einer Halbwertszeit von ungefähr 4 Wochen abgebaut werden, schützt diese passive Immunisierung lediglich 3 bis 4 Monate vor Infektion durch die meisten Keime. Stillen kann durch unspezpezifische IgAs, die sich den Schleimhäuten anlagern, noch etwas länger vor Infektionen der oberen Atemwege und Magen/Darmkeimen schützen.

In den ersten Lebensmonaten beginnt das Immunsystem, sich auf die Abwehr von Krankheitszellen vorzubereiten. Dies geschieht durch einen Vorgang der negativen Selektion; das heißt, der Körper bildet zunächst durch zufällige genetische Rekombination viele Millionen unterschiedlicher Abwehrzellen, von denen eine jede ein anderes Antigen erkennen kann. Im Anschluss werden solche Zellen eliminiert, die eine Immunreaktion auf körpereigene Strukturen veranlassen würden (Diesen Vorgang fasst man unter dem Begriff Selbsttoleranz zusammen). Bei den T-Zellen geschieht dies im Thymus, der Reifungsstätte der T-Zellen. Hier differenzieren sich die T-Zellen in die verschiedenen Typen (wie CD4+ und CD8+ Zellen) und werden anschließend mit körpereigenen Substanzen konfrontiert. Wenn eine T-Zelle einen dazu passenden Rezeptor trägt und an die körpereigene Struktur bindet, stirbt die T-Zelle ab. Das Immunsystem lernt so „fremd“ von „eigen“ zu unterscheiden.

Mit fortschreitendem Lebensalter steigert sich die Anfälligkeit des Menschen gegenüber Krankheiten und anderen Störungen wieder. Dies liegt vor allem daran, dass sich im Alter die Bildung von B- und T-Lymphozyten verringert. Des Weiteren sind die Abwehrzellen insgesamt weniger aktiv, was zu einer Schwächung der Immunabwehr führt, einhergehend mit erhöhtem Infekt- und Krebsrisiko.

Störungen und Erkrankungen des Immunsystems

Wie bei allen biologischen Systemen können sich auch beim Immunsystem Fehler einschleichen. So kann das Immunsystem seine Fähigkeit verlieren, auf Erreger oder körpereigene Zellen angemessen zu reagieren: je nach Ursache der Störung kommt es entweder zu einer zu schwachen oder gar fehlenden Immunantwort oder zu einer zu starken, überschießenden Immunreaktion. Auch die Zellen des Immunsystems können maligne entarten und eine Krebserkrankung auslösen. Ebenso wird ein Einfluss von depressiven Störungen, Stress und anderen psychischen Erkrankungen auf das Immunsystem vermutet.

Immundefekte

Siehe auch den Hauptartikel Immundefekt.

Fehlen einzelne Komponenten der Immunantwort oder funktionieren diese nicht mehr richtig, so kann das Immunsystem Krankheitserreger nicht mehr effektiv bekämpfen und selbst Erkrankungen, die normalerweise harmlos sind, können lebensbedrohliche Verläufe annehmen. Immundefekte können angeboren oder erworben sein:

  • Die schwere kombinierte Immundefizienz (SCID) ist eine Gruppe von angeborenen Immundefekten, die sich durch Beeinträchtigung sowohl der zellulären Immunabwehr als auch der humoralen Immunabwehr auszeichnen, daher die Bezeichnung „kombiniert“.
  • Die erworbene Immunschwäche (AIDS) wird durch das HI-Virus ausgelöst, das sich durch den Befall der T-Helferzellen erfolgreich der Immunabwehr entzieht. Durch die Vermehrung des HI-Virus werden jedoch immer mehr Abwehrzellen zerstört, so dass meist nach einigen Jahren Inkubationszeit eine zunehmende Abwehrschwäche eintritt und die Anzahl von Infekten und Tumorerkrankungen zunimmt.
  • Eine Neutropenie oder sogar Agranulozytose kann durch Nebenwirkungen bestimmter Medikamente oder durch Autoimmunerkrankungen ausgelöst werden und führt vor allem zu Schleimhautentzündungen und so genannten opportunistischen Infekten durch ansonsten harmlose Krankheitserreger.
  • Weitere angeborene Immundefekte sind: Morbus Behcet, DiGeorge-Syndrom, selektiver Immunglobulin-A-Mangel und das Wiskott-Aldrich-Syndrom, bei denen jeweils ein bestimmter Anteil der Immunabwehr gestört ist.

Überschießende Immunantwort

  • Autoimmunerkrankungen: Nicht immer funktionieren die Schutzmechanismen der Selbsttoleranz fehlerfrei, so dass es zu gefährlichen Autoimmunkrankheiten kommen kann, bei denen das Immunsystem körpereigene Strukturen angreift. Bei diesen Krankheiten ist das üblicherweise sehr gut ausbalancierte Gleichgewicht zwischen einerseits den potentiell selbstzerstörerisch wirkenden (autoreaktiven) T-Zellen und andererseits den regulatorischen T-Zellen gestört, die die Ersteren eigentlich in „Schach halten“ sollen. Einige Beispiele für Autoimmunerkrankungen sind:
  • Allergie/Heuschnupfen: Das Immunsystem kann die Fähigkeit verlieren, auf fremde Eiweiße angemessen zu reagieren. Die übermäßige Aktivierung von Basophilen (und Eosinophilen), insbesondere aber der ortsständigen Mastzellen, kann zur allergischen Reaktionen, wie zum Beispiel Heuschnupfen, führen. Eine systematische Aktivierung dieser Zellen, also die Aktivierung im ganzen Körper, kann schwere Symptome bis hin zum anaphylaktischen Schock auslösen.

Krebserkrankungen des Immunsystems

siehe auch Hauptartikel Leukämie sowie Plasmozytom, Lymphom, Lymphosarkom.

 

Auch die Zellen des Immunsystems können bösartig entarten und so zu Krebserkrankungen führen, die meist den gesamten Körper befallen und sich vor allem in den Organen des Immunsystems abspielen und zur Abnahme der Immunabwehr und Verdrängung der normalen Blutbildung im Knochenmark führen. Durch die große Zahl unterschiedlicher Zellen und deren Vorläufer gibt es eine Vielzahl von verschiedenen Krebserkrankungen mit ganz unterschiedlichen Symptomen und Krankheitsverläufen, die aber grob in zwei Gruppen eingeteilt werden können: Geht der Krebs von den Vorläuferzellen im Knochenmark aus, so spricht man von Leukämien, die akut oder chronisch verlaufen können. Bösartige Tumoren der Lymphknoten nennt man Lymphknotenkrebs oder malignes Lymphom.

Sonstige Schwachpunkte des Immunsystems

  • Haben Viren sich in eine Schicht eingehüllt, die der Körper nicht als fremd erkennt (beispielsweise eine Schicht aus Lipiden), so sind sie nicht erkennbar.
  • Im Gegensatz zu Krankheitserregern verursachen Tumorzellen keine Entzündungsreaktion, es kommt daher nicht zu einer Aktivierung der Immunantwort. Einige Tumore haben die Eigenschaft, sich regelrecht zu tarnen. Wenn keine tumorassoziierten Antigene (TAA) von den Krebszellen gebildet werden, erkennt das Immunsystem die Krebszelle daher nicht und es kommt zu Krebswachstum und/oder Metastasierung [11].
  • Das Immunsystem schützt nach heutigem Kenntnisstand nicht vor Prionen (infektiöse Proteine), sondern scheint – im Gegenteil – eine Rolle bei der Ausbreitung der Prionenerkrankung zu spielen. So waren beispielsweise in einem Experiment Mäuse mit defektem Immunsystem immun gegen eingebrachte Prionen, während Tiere mit funktionierendem Immunsystem eine Erkrankung entwickelten[12].

Einflüsse auf das Immunsystem

Die Abwehrfunktion kann auf verschiedene Weise positiv oder negativ beeinflusst werden:

Allgemeine Stärkung des Immunsystems

Ein gesundes und kräftiges Immunsystem kann Menschen dabei helfen, diverse Krankheitserreger zu bekämpfen und manchmal damit auch einen Krankheitsausbruch zu verhindern oder Krankheitssymptome zu mildern, beziehungsweise den Krankheitsverlauf zu verkürzen.

Als Grundlage für ein gesundes Immunsystem gelten eine ausgewogene Ernährung, die alle für den Organismus notwendigen Stoffe wie beispielsweise Mineralstoffe (besonders Eisen, Zink und Selen) und Vitamine enthält, und ausreichend Schlaf[13]; des Weiteren sollte lange andauernder (chronischer) Stress vermieden werden[14].

Als geeignete Maßnahmen zur Steigerung der Immunfunktion gelten regelmäßige Bewegung, insbesondere sportliches Ausdauertraining, sowie regelmäßige Abhärtung, zum Beispiel durch Saunieren und Anwendung von Kneippschen Güssen[15]. Auch Heilfasten wird als Möglichkeit bezeichnet, das Immunsystem zu stärken, dies ist jedoch umstritten. Die klinische Hypnotherapie hat suggestive Methoden zur Unterstützung des allgemeinen Immunsystems sowie zur Behandlung einzelner Immunerkrankungen entwickelt. [16]

Sonnenlicht zur Stärkung des Immunsystems

Sonnenlicht kann ebenfalls das Immunsystem stärken. Bereits vor mehr als 100 Jahren war das tägliche Sonnenbad ein fester Bestandteil der Tuberkulosetherapie, aber erst durch neuere Forschung konnte der zugrundeliegende Mechanismus dargestellt werden: Bestimmte Abwehrzellen besitzen auf ihrer Oberfläche einen so genannten Toll-like Receptor, dieser wird bei einer Bakterieninfektion aktiviert und veranlasst die Abwehrzelle dazu, eine Vorstufe von Vitamin D (25-hydroxyvitamin D) zu produzieren. Gleichzeitig bildet die selbe Zelle verstärkt einen weiteren Rezeptortyp aus, der auf die Erkennung von Vitamin D spezialisiert ist. Das Sonnenlicht wandelt die Vitamin-D-Vorstufe in das aktive Vitamin D um, welches sich nun an den Rezeptor heftet. Dadurch wird die Abwehrzelle dazu angeregt, das antibakteriell wirkende Cathelizidin zu bilden.

Dieser Zusammenhang erklärt auch, warum Menschen mit dunkler Haut für Infektionen wie beispielsweise die Hauttuberkulose besonders empfänglich sind: In ihrem Blut finden sich in der Regel deutlich geringere Mengen der Vitamin D-Vorstufe, wobei dieser Mangel mit der zusätzlichen Einnahme von Vitamin D-Präparaten zur Stärkung des Immunsystems leicht ausgeglichen werden kann.

Impfung

Siehe auch den Hauptartikel Impfung.

Die Impfung ist eine Methode zur Stärkung des Immunsystems und eine vorbeugende Maßnahme gegen bestimmte Infektionskrankheiten. Bei der aktiven Impfung, der häufigsten Form der Impfung, wird das Immunsystem zur Bildung einer Immunkompetenz angeregt, ohne die Erkrankung selbst auszulösen. Hierzu werden abgeschwächte Erreger oder bestimmte typische Eiweißstoffe (Proteine) und Zuckermoleküle als Impfstoffe in den Körper eingebracht. Die Reaktion des Organismus auf diese Antigene führt zur Bildung spezifischer Antikörper und Gedächtniszellen, die weiterhin im Blut und den Lymphbahnen zirkulieren, wodurch der Schutz gegen diese Antigene lange erhalten bleibt. Falls der Körper erneut mit dem Erreger in Kontakt kommt, hat er durch die Gedächtniszellen eine sehr viel effizientere und schnellere Immunantwort zur Verfügung, die die Erreger bekämpft, bevor es zu einer Erkrankung kommt.

Immunsuppression

Siehe auch den Hauptartikel Immunsuppresivum.

In manchen Situationen ist eine Immunsuppression, also eine medikamentöse Hemmung oder sogar komplette Unterdrückung der Immunantwort notwendig. Dies ist zum Beispiel der Fall bei Patienten, die ein fremdes Organ als Transplantat erhalten haben. Auch bei Autoimmunerkrankungen (inklusive rheumatischer Erkrankungen) und Allergien ist manchmal eine Immunsuppression notwendig. Das am längsten bekannte immunsuppressive Medikament ist Cortison, die Vorstufe des körpereigenen Hormons Cortisol. Neuere Wirkstoffe wie Tacrolimus oder Cyclosporin A sind jedoch teilweise deutlich wirksamer und/oder haben geringere Nebenwirkungen.

Das Immunsystem schädigende Faktoren

Abgesehen von der Alterung gibt es weitere Faktoren, die die Funktion des Immunsystems schädigen und herabsetzen können. Dazu zählen unter anderem eine starke gesundheitliche Beeinträchtigung durch Vorschädigung wie beispielsweise bei chronischen Erkrankungen, eine medikamentöse Immunsuppression wie beispielsweise nach Organtransplantationen, Drogenmissbrauch (auch Nikotin und Alkohol), eine Mangelernährung und damit verbundene Unterversorgung auch mit Vitaminen und Spurenelementen, eine ungesunde oder unausgeglichene Ernährung [17], die Aufnahme von Umweltgiften aus der Umgebung [18], die Einwirkung von radioaktiver Strahlung, andauernder Stress, zu wenig Schlaf, Bewegungsmangel und auch eine übermäßige Kälteeinwirkung im Sinne von längerer Auskühlung [19] oder gar Unterkühlung (Hypothermie). Dabei kann eine Kombination von mehreren Faktoren natürlich eine verstärkte Belastung für das Immunsystem darstellen.

Evolutionäre Betrachtungsweise

Die komplexe Wechselbeziehung zwischen dem Wirtsorganismus und den Erregern kann unter evolutionären Gesichtspunkten als ein „Angreifer-Verteidiger-System“ angesehen werden. Durch die Abwehrmaßnahmen des Immunsystems kommt es zu einem starken Selektionsdruck, unter dessen Einfluss sich die Erreger immer besser an den (menschlichen) Organismus anpassen müssen, um weiter fortzubestehen. Gleichzeitig üben Krankheitserreger oder Parasiten einen Selektionsdruck auf das Immunsytem des Wirts aus, so kann es zu einer Koevolution von Parasit und Wirt kommen, die zu einer Symbiose führen kann. Dann können die ehemaligen Erreger den Wirt für ihre Vermehrung nutzen, ohne ihn zu schädigen. Ein Beispiel für eine solche erfolgreiche Koevolution sind die Mitochondrien, welche ehemals als körperfremder Schädling in die Zellen von Eukaryonten eindrangen und die sich im Laufe der Jahrmillionen zu einer wichtigen Zellorganelle entwickelten[20].

Bei Infektionen mit Krankheitserregern, welche an den Menschen als ihren Reservoirwirt angepasst sind, kann eine Erkrankung – bei intaktem Immunsystem und geringer Erregerdosis – entweder überhaupt nicht ausbrechen oder einen weniger schweren Verlauf nehmen. Bei Infektionen mit an den Menschen nicht oder nur wenig angepassten Erregern hängt es von vielen Faktoren (Zustand des Immunsystems, Aggressivität der Erreger) ab, wie schwer eine Erkrankung verläuft und wie lange sie dauert oder ob der Erkrankte an den Folgen der Infektion sogar verstirbt. Die Höhe der durchschnittlichen Letalität einer Erkrankung lässt nach dieser Theorie beispielsweise Rückschlüsse zu, wie gut oder schlecht Krankheitserreger an den Menschen angepasst sind.

Durch diese evolutionäre Betrachtungsweise lassen sich viele Vorgänge der Immunologie besser verstehen und interessante Erkenntnisse zur Stammesgeschichte der Erreger gewinnen. In vielen wissenschaftlichen Studien wurden Hinweise für die Richtigkeit dieser Betrachtungsweise gefunden, es gibt jedoch auch noch genauso viele widersprüchliche Ergebnisse, so dass diese evolutionäre Theorie der Immunologie noch nicht abschließend bewertet werden kann.

Einfluss auf die Partnerwahl

Untersuchungen am Max-Planck-Institut mit Tieren erbrachten unter anderem Hinweise auf einen Zusammenhang zwischen dem individuellen Immunsystem eines Lebewesens und der Partnerwahl. Über den Geruchssinn kann die genetische Individualität und Verschiedenheit erfasst und bewertet werden. Die Untersuchungen ergaben: MHC-Peptide erlauben dem Immunsystem, durch die Analyse der MHC-Peptidkomplexe an der Zelloberfläche durch die T-Zellrezeptoren, Information über den Status von einzelnen Zellen zu erlangen. Und die Analyse der Struktur dieser Peptide ermöglicht über olfaktorische Neuronen Informationen über den genetischen Status eines Gegenübers zu gewinnen. Dies ist möglich, weil die Struktur der Ankerreste von Peptiden Rückschlüsse auf die Struktur von MHC-Molekülen und damit Rückschlüsse auf die Kodierungskapazität von Organismen erlauben.[21]

Literatur

  • Charles A. Janeway: Immunologie. Spektrum Akademischer Verlag; 5. Auflage (2002) ISBN 3-8274-1079-7.
  • Gerd-Rüdiger Burmester: Taschenatlas der Immunologie. Grundlagen, Labor, Klinik. Thieme, Stuttgart; 2. Auflage (2006) ISBN 3-13-115382-2
  • Abul K. Abbas: Cellular and Molecular Immunology (engl.). W.B. Saunders Company; 5th Update (2005) ISBN 1-4160-2389-5
  • Peter F. Zipfel, Peter Kraiczy, Jens Hellwage: Wie Mikroorganismen der Immunabwehr entgehen - Das tägliche Versteckspiel. Biologie in unserer Zeit 32(6), S. 371 - 379 (2002), ISSN 0045-205X

Quellen

  1. Armant AM and Fenton MJ: „Toll-like receptors: a family of pattern-recognition receptors in mammals“. Genome Biol. 2002; 3(8): s. reviews3011.1–reviews3011.6 [Abstract] [Artikel]
  2. Drenth, Joost P.H., van der Meer, Jos W.M.: „The Inflammasome -- A Linebacker of Innate Defense“. New England Journal of Medicine 2006; 355: s. 730-732 [Abstract]
  3. Sanjeev Mariathasan and Denise M. Monack: „Inflammasome adaptors and sensors: intracellular regulators of infection and inflammation“. Nature Reviews Immunology 2007; 7: s. 31-40 [Abstract] [Artikel]
  4. Martinelli C, Reichhart JM: „Evolution and integration of innate immune systems from fruit flies to man: lessons and questions“. J Endotoxin Res. 2005; 11(4): s. 243-248 [Abstract]
  5. Borghans JA, Noest AJ, De Boer RJ: „How Specific Should Immunological Memory Be?“. The Journal of Immunology 1999; 163: s. 569-575  [Artikel]
  6. Svedmyr E, Jondal M: „Cytotoxic effector cells specific for B Cell lines transformed by Epstein-Barr virus are present in patients with infectious mononucleosis.“. Proc Natl Acad Sci U S A. 1975; 72(4): s. 1622–1626 [Abstract] [Artikel]
  7. Ljunggren HG, Karre K: „In search of the 'missing self': MHC molecules and NK cell recognition.“. Immunol Today. 1990; 11(7): s. 237-44 [Abstract] [Artikel]
  8. Sakaguchi S, Sakaguchi N et al.: „Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases“. J Immunol. 1995; 155(3): s. 1151-1164 [Abstract]
  9. Campanelli R, Palermo B et al.: „Human CD8 co-receptor is strictly involved in MHC-peptide tetramer-TCR binding and T cell activation“. Int Immunol. 2002; 14(1): s. 39-44 [Abstract] [Artikel]
  10. June CH, Ledbetter JA et al.: „Role of the CD28 receptor in T-cell activation“. Immunol Today 1990; 11(6): s. 211-216 [Abstract]
  11. Bubanovic I, Najman S: „Failure of anti-tumor immunity in mammals--evolution of the hypothesis“ Acta Biotheor. 2004;52(1): s. 57–64. PMID 14963404
  12. Klein MA, Frigg R et al.: „A crucial role for B cells in neuroinvasive scrapie“. Nature 1997; 390(6661): s. 687-690 [Abstract] [Artikel]
  13. Irwin M, Mascovich A et al.: „Partial sleep deprivation reduces natural killer cell activity in humans“. Psychosomatic Medicine 1994; 56(6): s. 493-498 [Abstract]
  14. Schedlowski M, Schmidt RE: „Streß und Immunsystem“. Naturwissenschaften 1996; 83(5): s. 214-220 [Abstract]
  15. Dugue B, Leppanen E: „Adaptation related to cytokines in man: effects of regular swimming in ice-cold water“. Clinical Physiology 2000; Volume 20(2): s. S. 114-121 [Abstract]
  16. Auerbach J Suggestions with Autoimmune Disease, in: D. Corydon Hammond (ed.), Handbook of Hypnotic Suggestions and Metaphors, New York, London (Norton) 1990, 241f.
  17. Forschungsnachrichten.de: Mit Aminosäuren der Erkältung den Kampf ansagen (29. September 2005)
  18. Bayer-Oglesby L, Grize L et al.: „Decline of Ambient Air Pollution Levels and Improved Respiratory Health in Swiss Children“. Environmental Health Perspectives 2005; 113(11): s. 1632-1637 [Abstract] [Artikel]
  19. Johnson C, Eccles R: „Acute cooling of the feet and the onset of common cold symptoms“. Family Practice 2005; 22(6): s. 608–13 [Abstract]
  20. Dyall SD, Brown MT, Johnson PJ: „Ancient invasions: from endosymbionts to organelles“. Science 2004; 304(5668): s. 253-257 [Abstract]
  21. Boehm, Thomas 2005 Qualitätskontrolle im Immunsystem. (Steuerung der Partnerwahl) Max-Planck-Institut für Immunbiologie, Freiburg, Beteiligte Abteilungen: Entwicklung des Immunsystems
Dieser Artikel wurde in die Liste der lesenswerten Artikel aufgenommen.
 
Dieser Artikel basiert auf dem Artikel Immunsystem aus der freien Enzyklopädie Wikipedia und steht unter der GNU-Lizenz für freie Dokumentation. In der Wikipedia ist eine Liste der Autoren verfügbar.
Ihr Bowser ist nicht aktuell. Microsoft Internet Explorer 6.0 unterstützt einige Funktionen auf ie.DE nicht.