Meine Merkliste  

Heterozygous inactivation of the Nf1 gene in myeloid cells enhances neointima formation via a rosuvastatin-sensitive cellular pathway

Mutations in the NF1 tumor suppressor gene cause Neurofibromatosis type 1 (NF1). Neurofibromin, the protein product of NF1, functions as a negative regulator of Ras activity. Some NF1 patients develop cardiovascular disease, which represents an underrecognized disease complication and contributes to excess morbidity and mortality. Specifically, NF1 patients develop arterial occlusion resulting in tissue ischemia and sudden death. Murine studies demonstrate that heterozygous inactivation of Nf1 (Nf1+/–) in bone marrow cells enhances neointima formation following arterial injury. Macrophages infiltrate Nf1+/– neointimas, and NF1 patients have increased circulating inflammatory monocytes in their peripheral blood. Therefore, we tested the hypothesis that heterozygous inactivation of Nf1 in myeloid cells is sufficient for neointima formation. Specific ablation of a single copy of the Nf1 gene in myeloid cells alone mobilizes a discrete pro-inflammatory murine monocyte population via a cell autonomous and gene-dosage dependent mechanism. Furthermore, lineage-restricted heterozygous inactivation of Nf1 in myeloid cells is sufficient to reproduce the enhanced neointima formation observed in Nf1+/– mice when compared with wild-type controls, and homozygous inactivation of Nf1 in myeloid cells amplified the degree of arterial stenosis after arterial injury. Treatment of Nf1+/– mice with rosuvastatin, a stain with anti-inflammatory properties, significantly reduced neointima formation when compared with control. These studies identify neurofibromin-deficient myeloid cells as critical cellular effectors of Nf1+/– neointima formation and propose a potential therapeutic for NF1 cardiovascular disease.

Autoren:   Brian K. Stansfield; Waylan K. Bessler; Raghuveer Mali; Julie A. Mund; Brandon Downing; Fang Li; Kara N. Sarchet; Matthew R. DiStasi; Simon J. Conway; Reuben Kapur; David A. Ingram, Jr
Journal:   Human Molecular Genetics
Band:   22
Ausgabe:   5
Jahrgang:   2013
Seiten:   977
DOI:   10.1093/hmg/dds502
Erscheinungsdatum:   01.03.2013
Mehr über Oxford University Press
  • Fachpublikationen

    Suppressive functions of B cells in infectious diseases

    B lymphocytes are often essential to successfully control invading pathogens and play a primary role in the protection afforded by successful vaccines through the production of specific antibodies. However, recent studies have highlighted the complex roles of B cells in infectious diseases, ... mehr

    The expanding family of regulatory B cells

    Over the last decade it has become evident that in addition to producing antibody, B cells activate the immune system by producing cytokines and via antigen presentation. In addition, B cells also exhibit immunosuppressive functions via diverse regulatory mechanisms. This subset of B cells, ... mehr

    Regulatory B cells in anti-tumor immunity

    Advances in understanding of the immune microenvironment have highlighted the role of immunosuppressive T cell, myeloid, dendritic and monocytic sub-populations in inhibition of the anti-tumor immune response. The role of B cells in modulating the immune response to solid tumors as well as ... mehr

Ihr Bowser ist nicht aktuell. Microsoft Internet Explorer 6.0 unterstützt einige Funktionen auf Chemie.DE nicht.